Zigouris Th. Evangelos
Kalantzopoulos G. Athanasios

Vassalos E. Evangelos

LabVIEW to CCS Link

Internal Report

THMIO
Q\"

4 AtNN

. _‘h'm =

PSity oF ¥

v

Electronics Laboratory
Computer and Electronics Division
Department of Physics
University of Patras

Patras 2007

LabVIEW to CCS Link i

LABVIEW TO CCS LINK
Table Of Contents

1. INTRODUCTION.....otiiitiitieeiieeiteenite e et e et e st e etee et e sieeesareesaneesneesneesneeens 1
1.1 Link for Code Composer Studio Development TOOISccceeeeevienieiiienieeiieneas 1
1.2 Test Integration Toolkit for TI DSPS......ccccoviiiiiiiiiiiiiiicceeeceeeecee 2
1.3 What is LabVIEW t0 CCS Link ? ...cccooiiiiiiiiieeeeeeeeee et 3
2. DESCRIPTION OF SUBVIS INLABVIEW TO CCS LINK ..cccveeriieniiieiiceinenne 4
2.1 COS SOUUP cuttettetieie ettt ettt et te st te et et e e esee s st enbeesteeseenseentesseenseensesseenseensenseens 4
2.1.1 CCS_SetupP OPON.Vie.uiiisiiieiieiieeiieiieeieesieesteeieessteeseesaeeseesaseeseesssesnseens 4

2.1.2 CCS_SEtUP CIOSE.VI .ueiiriiieiiiiieiiieeiiieesiteeesireeesieeesteeesaeeesseeessseeensseesnsseeens 5

2.1.3 CCS_Setup ClLEAT.Vi....uiesuieeiieiieeiieiieeieesiee ettt eteetee e et saaeebeessneenseens 6

2.1.4 CCS_Setup Add Board.Vi.......cccoeeeeiiieiiieeiieeeieeeite et 6

2.1.5 CCS_Setup Rename Board.Vi........ccooceerieiiiienieeiienieeiieeieeee e 7

2.1.6 CCS_Setup Remove Board.Vi........ccccoeoiiiriiiieiiieeciieeeieeeciee e 8

2.1.7 CCS_Setup Rename ProCeSSOr.Vi.......ccceeruerriieriieniienieesiieeieenieeereeneneenneas 9

2.1.8 CCS_Setup Boards & Processors.Vi........ccoceeeieereieeeniieeesieeenreeeneveeennns 10

2.1.9 CCS_StUP SAVE.VI .eeruiieiiieiieeiieiieeitesiie et eite et siee et siae e eaesseesaae e 10

2.2 CCS AULOMATIONiiiiiiiiieeiie ettt ettt ettt ettt et e et e sateebeesabeebeesabeebeesnbeenees 11
221 CCS _OPLILVIuutiiiiiiiiiiiiieeiteieeie sttt ettt sttt ettt st nae st e saeeae e 11
2.2.2 COCS _ClOSC.VI etuieiieieeiiesiieieee st ettt te st te e st eteentesseeseeneenseensens 12
2.2.3 CCS_OPen._ ProJECt.VI c.ceeiieiieeiieiieeitesiie ettt ettt et 13
2.2.4 CCS _CloSE ProjeCt.Vi.iicioiiesiieeiiiieeiieeeiieesieeesieeesveeesaeeessaeeessseeesseeenenes 14
2.2.5 CCS _CONNECL VI ..eiiiiieiieeiiieiieeiieeieeeteeteesieeeseesteebeesseeesbeessaeenseenseesnseennns 14
2.2.6 CCS _DISCONNECEVI c.uvvieeiiiieeiieeeiieeeiieeeireesieeesteeesseeessaeeessseeessseeessseeensnes 15

2277 CCS BUild AlLVI cueiiiiiiiiiiiiieieceee ettt 16
2.2.8 CCS _Build ReSUIL.VI .coeiriieiieiieieieeie e 17

2.2.9 CCS _DOWNIOAA.VI..utiiiiiiiiiiiiieiieiie ettt ettt 18
2.2.10 COCS_RESCLVI eeeuiieuieiieieeiiesiiete et seee ettt et e st saeestesaeesbeentesseenseenseeneas 19
22,11 CCS_ RUNVIuiiitiiiiiiiiiiiiieeitete ettt sttt sttt st sbe et s nbe e 20
22,12 CCS_RESLAIT.Vi.ueeiieiieiiesiieieeie sttt ettt eae st eteenteseeeseeneenseensens 21
22,13 CCS_HaAlt.VI ittt s 21
2.2.14 CCS_Is DSP RUNNINEZ. VI .eectieiiiiiiiiieieeiesieeie et 22
2.2.15 CCS_RTDX ENable.Vi ..ccueeiiiriiiiiiiniieiieieeiesieeieeeseee et 23
2.2.16 CCS_RTDX DiSable.Vieeruieuiiiieiieiieiiieieeiesieeie et 24
2.2.17 CCS_RTDX Logfile Configuration.vi.........ccceevueeeueenuieeiieenienieenieeeneenens 25

2.3 CCS COMMUNICALION ...eutieiiieiieeitieiieeteesite ettt et e siteebeesate e bt e ssbeesseesabeenbeeenbeeneee 26
2.3.1 RTDX Channel DiSable.Viccccceeruierireiiieiiieiieeie e 26

2.3.2 RTDX Channel Enable.Vi......cccccoeiiiiiiiiiiiiiecieeceecee e 27

2.3.3 RTDX Channel Status.Vi.......cccoocierierireniienieeiienie et eieesre e 27

234 RTDX REAA.VI.ciioiiiiieiieieciieie ettt e 28
23,5 RTDX W VI cueeriiiiiiiieiteieeiterie ettt sttt ettt 42
2.3.6 MEM Get AdAreSS. Vi coccueeeeeiieeiiieeiiie e eiee et eeiee et e sveeeeaee e e e 57
237 MEM REAA. VI .coueiiiiiiiiiiiiieiicieitce ettt 58
2.3.8 MEM_ WII@. VI c.eeeiieiieiie ettt ettt ettt s neeeneas 78

il Contents
239 Leds Read (DSKO713).Vi.cciooiiiiiiiiiriieieeiesieeieee st 98

2.3.10 Leds Write (DSKOT7I3).V1 cceeviiriiiiiiiiniieieeieeiesiecieee st 99

2.3.11 Switches Read (DSKO713).Vi.eeiiioiriiiieieiieieeieeieieee e 100

3. USING THE LABVIEW TO CCS LINKcoociiiiiiiiiniiiiciieeieeiecieeeeeee 102
3.1 CCS SOIUP ..ttt ettt ettt ettt et e et e st et e et e sbeenteeneesseenseeneesseenseeneenneens 102
3.1.1 CCS Setup for one board............ccceeviieiiiiiiiiieeieeee e 102

3.1.2 CCS Setup for multiple boards..........cccureeiiieiiiiieeiieece e 103

3.2 CCS AULOMATIONeueeiieieeiieeiiete ettt ettt ettt sttt ettt sttt ebeeatesbeenaeeanesaeens 105
3.2.1 Automate CCS to control one DSPccociiiiiiiiiiiiieeeee 105

3.2.2 Automate CCS to control more that one DSPSccccevirviiniininninnene. 107

3.3 CCS COMMUNICATION ...uttteniieeiiieiieeiteeiee ettt et e site et et e et et eebeesseesabeesaeeenbeeneee 109
3.3.1 Direct DSP MEmMOTY QCCESS ...cvvieiieniiieiieriiieiienteeieeseeeteesveensaesseenseeens 109

3.3.2 Using the RTDX technology.......cccoveeiiiieriieeiieeieeceeeee e 111

4. APPLICATIONSeeiiiiiiitiiie ettt ere ettt et e esnee st e eaneesaneesanee s 114
4.1 A Three-band Graphical EQUAliZer..........cccccoviviiiiniiniiiiiiciccecc e 114
4.1.1 Guidelines for graphical equalizers...........cccceevirrerieriieeriieniieiieeie e 114

4.1.2 SPECIHICALIONS ..ottt ettt s 117

4.1.3 Design and control of the graphical equalizer using MATLAB............... 117

4.1.4 Implementation of the graphical equalizer in CCScceeiivininnen. 123

4.1.5 Implementation of a VI to control the graphical equalizer 127

4.1.6 Results — CONCIUSIONSccuueeeiiieeiiieeiieeciie et eeeeeeree e e e veeeereeearee e 133

4.2 A Digital Image Processing Applicationccccoveeevienieeiienieniiienieeie e 136
4.2.1 Edge DeteCtioncccuieuiiiiieiieeiieiie ettt 136

4.2.2 Direct and Inverse Discrete Cosine Transformationcccceevereennene. 141

4.2.3 JPEG standard encoding and decodingccccoeevuerieneinienicneenicnnenn 156

4.2.4 Histogram EQUalization............cccoeeieriieiieeiiieniecieeeee e 165

4.2.5 Implementing the VI to control the applicationccoceevieiiinninnnen. 176

4.2.6 Results — CONCIUSIONScceevuieriieiiniieiieiesiieieee e 188

S. DBIBLIOGRAPHY ...uuuvviiiiiieeeeeeiisiiiiitteeeeeeeessnsnttreeeeeeessesssssnsssseeeeessesssnsnsssenes 191

LabVIEW to CCS Link 1

1. Introduction

The continuous growth of DSPs (Digital Signal Processors) led many companies such as
The Mathworks and National Instruments (NI) to incorporate specific tools for
communication with DSP development boards in their main utilities. Texas Instruments (TI)
holds the major part of the DSP market today and this is the reason why NI and The
Mathworks have emphasized to TI’s DSPs along with Code Composer Studio (CCS)
development environment.

1.1 Link for Code Composer Studio Development Tools

The Mathworks, trying to follow the enormous growth of DSPs, created the “Link for
Code Composer Studio Development Tools”, which allows MATLAB and Simulink to
connect with the Code Composer Studio (CCS) environment and TI’s DSPs.

The “Link for Code Composer Studio Development Tools” is a set of functions, with
which a two-way connection between MATLAB and CCS is created. Through this
connection, the control of CCS and by consequence the control of DSP is attainable, as shown
in figure 1. Using the above set of functions, data transfer from DSP memory or DSP
registers, is also attainable. Data transfer from DSP memory to MATLAB and in reverse, is
accomplished either by direct DSP memory access or by using TI’s RTDX (Real-Time Data
Exchange) technology.

The “Link for Code Composer Studio Developments Tools v2.1” requires that CCS v3.1
or later as well as MATLAB R2006Db or later, are already installed.

MATLAB and Simulink

Link for Code Composer Studio

! l

Code Composer Studio

1 1 11

C2000 C5000 C6000 OMAP

Figure 1. MATLAB connection with CCS

In order to create Graphical User Interfaces (GUIs), MATLAB offers GUIDE (GUI
Development Environment) that contains a set of tools for GUI development. These tools can
really simplify the GUI design and programming. Using GUIDE in combination with Link for
Code Composer Studio Development Tools, the user can create GUIs that will control and
communicate with applications on TI’s DSPs that are implemented with CCS.

2 1. Introduction
1.2 Test Integration Toolkit for TI DSPs

For LabVIEW to connect with CCS, National Instrument (NI) offers a toolkit named

DSP Test Integration Toolkit for TI DSP v2.0. When the above toolkit is installed, LabVIEW

acquires a new set of subVIs, with which CCS can be software controlled and automated as

well as data can be transferred from CCS to LabVIEW and in reverse, either by direct DSP
memory read/write operations, or by using TI’s RTDX technology.
The basic VIs that the toolkit provides, are separated into two main categories :

e Automation of CCS (CCS Automation VIs): VIs that belong to this category are used to
control CSS and consequently the DSP.

e Communication with CCS (CCS Communication VIs): The VIs of this category are used
for data transfers from DSP to LabVIEW and reversely, either by direct DSP memory
access, or by using TI’s RTDX technology.

The icon and name of every VI in Test Integration Toolkit for TI DSPs is presented in Table

1, according to the category that it belongs.

Automation of CCS Communication with CCS
Icon Name Icon Name
TI-0ZF TI-DZF
= | | CCS Open Project.vi Ex| | CCS RTDX Read.vi
Biead
TI-O2E TEOEF
BN | CCS Build.vi BLl | CCS RTDX Write.vi
wirite
TI-0ZE TL-OZF
i CCS Download Code.vi Br CCS RTDX Enable.vi
] EHAELE
TI-OZE TIOZF
Rt CCS Run.vi BLcH.| | CCS RTDX Enable Channel.vi
E EHAELE
TIOEE TLOEE
hall || CCS Halt.vi i CCS RTDX Disable.vi
:E DI=AELE
TI-0ZF TI-0ZF
%E CCS Close Project.vi Ex @H.| | CCS RTDX Disable Channel.vi
DI=&ELE
TI-05E TIOEF
""E CCS Window Visibility.vi = | | CCS Memory Read.vi
TI-OZE T-OZP
“;5%, CCS Reset.vi ﬁ?nl CCS Memory Write.vi
TLOEE
="t | CCS Symbol to Memory Address.vi
Q2000

Table 1. NI’s Test Integration Toolkit for TI DSPs VIs

NI’s toolkit requires that LabVIEW v7.0 or later and Code Composer Studio v2.2 or
later is already installed. This toolkit does not support reading and writing floating point
numbers and tables by direct DSP memory access. It also does not support reading and
writing unsigned integers either by direct DSP memory access, or by using the RTDX
technology. Moreover, NI’s toolkit does not support the new CCS v3.1 capabilities, such as
dynamic board connect and disconnect, which leads to the fact that CCS can not be efficiently
controlled through LabVIEW.

LabVIEW to CCS Link 3
1.3 Whatis LabVIEW to CCS Link ?

Following the design philosophy of NI’s Test Integration Toolkit for TI DSPs and in
order to overcome its weak points, a new toolkit is created from scratch “LabVIEW to CCS
Link”. This new toolkit has the advantage of fully controlling the Code Composer Studio v3.1
and communicating with TI’s DSPs. Additionally it provides the opportunity to control
CCStudio Setup v3.1, so that the hardware with which the CCS will communicate, could be
software define through LabVIEW. This toolkit supports reading and writing numbers and
tables of all kind (floating-point single or double precision, signed and unsigned 1-, 2-, or 4-
bytes integers) as well as strings by direct DSP memory access. Moreover it supports number
and table (floating-point single or double precision, signed and unsigned 1-, 2-, or 4-bytes
integers) transfers from/to DSP, using the RTDX technology. The LabVIEW to CCS Link
requires that LabVIEW v7.1 or later and Code Composer Studio v3.1 are already installed. In
figure 2 the connection between LabVIEW and CCS is presented, using the LabVIEW to CCS
Link.

C2000 C5000 C6000 OMAP

Figure 2. LabVIEW connection with CCS

Using LabVIEW to CCS Link one can create in a fast and easy way VlIs that will
actually work as Graphical User Interfaces (GUIs) for controlling and managing DSPs’
applications. The LabVIEW to CCS Link is a very useful tool not only for educational
purposes but for DSP system designers as well, because of the little time, needed to develop
GUIs. This is ought to LabVIEW graphical programming language and to the advantages of
LabVIEW to CCS Link. Combining the capabilities of this toolkit and LabVIEW, the user can
create GUIs for DSPs’ applications, with huge potential for both controlling the application
and further result processing or data preprocessing.

4 2. Description of subVlIs in LabVIEW to CCS Link

2. Description of subVlIs in LabVIEW to CCS Link

The LabVIEW to CCS Link subVIs are separated into three categories, according to
their usage :

e (CCS Setup
e CCS Automation
e (CCS Communication

2.1 CCS Setup

The subVlIs that belong to CCS Setup category control the CCStudio Setup v3.1 or later
so that the board(s) that will communicate with CCS could be software defined. The term
“board(s)” contains both development platforms and simulators. CCS does not support the
usage of multiple simulators at the same time. However it does support, the presence of one
simulator and one or more boards, simultaneously. The CCS setup category SubVlIs are
presented in Table 2.

Name Icon Name

CCS_Setup Remove
Board.vi

CCS_Setup_Open.vi

CCS_Setup Rename
Processor.vi

CCS_Setup Boards &
Processors.vi

CCS_Setup Close.vi

CCS_Setup_Clear.vi

CCS_Setup
Add_Board.vi

CCS_Setup Rename
Board.vi

CCS_Setup_Save.vi

il LA L

ol el el
=

Table 2. The VIs of the CCS Setup category

2.1.1 CCS_Setup Open.vi

The subVI CCS_Setup Open.vi, shown in Figure 3, loads the CCStudio Setup and
creates a reference to CCStudio Setup.

Visible CCSetup Out
error in error out

Figure 3. The CCS_Setup Open.vi

Input “Visible” is Boolean and controls if the CCStudio Setup window will become
visible to the user. Its default value is True.

LabVIEW to CCS Link 5

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. If any error occurs before the execution of this
specific VI, no action will be made by this VI and the content of input “error in” will
pass to output “error out”. The VI will work normally only if no error has occurred in
earlier stages. The default value of this input is the “no error” situation. The elements
that constitute input “error in” are:

Input “status” is Boolean. Its value is False (#) if no error has occurred before
this VI execution, or True (#) if any error has occurred earlier. Its default
value is False.

Input “code” is a 32-bit integer showing the error code. If input “status” has a
True value then the input “code” will have a non-zero value representing the
specific error, otherwise it will have a zero value. Its default value is zero.
Input “source” is a String describing an error. Its value is an empty string, if no
error has occurred. Its default value is an empty String.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. If the

“error in” input, shows that an error has occurred before the execution if the VI, then
the “error out” output’s content will be the same as the “error in” input’s, otherwise it
will describe the error that might has occurred during the execution of this specific VI.
The elements that constitute output “error out” are:

Output “status” is Boolean. Its value is False (#) if no error has occurred,
otherwise its True (#).

Output “code” is a 32-bit integer showing the error code. If the “status” output
has a True value, then the “code” output will have a non-zero value
representing the specific error, otherwise it will have a zero value.

Output “source” is a String describing an error. Its value is an empty string, if
no error has occurred.

2.1.2 CCS_Setup_Close.vi

The subVI CCS_Setup Close.vi shown in Figure 4, closes the CCStudio Setup and the
reference that the CCS_Setup Open.vi has created.

CCSetup In error out
error in

Figure 4. The CCS_Setup_Close.vi

Input “CCSetup In” is a reference to CCStudio Setup.

Input“error in” is a cluster of inputs describing the error that may have occurred before
the execution of this specific VI. The elements that constitute input “error in” are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

2.1.3

2. Description of subVlIs in LabVIEW to CCS Link

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

CCS_Setup_Clear.vi

The subVI CCS_Setup Clear.vi shown in Figure 5, clears all the setting that have been

made at CCStudio Setup.

2.1.4

CCSetup In CCSetup Out
error in error out

Figure 5. The CCS_Setup_Clear.vi
Input “CCSetup In” is a reference to CCStudio Setup.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

CCS_Setup Add_Board.vi

The subVI CCS_Setup Add Board.vi, shown in Figure 6, adds a board to CCStudio

Setup. The drivers (files with .ccs extension) of this board are declared to input “Driver Path”.

CCSetup In

Driver Path-i7—— CCSetup Out
Options error out
error in

Figure 6. The CCS_Setup Add_Board.vi
Input “CCSetup In” is a reference to CCStudio Setup.

Input “Driver Path” is the full path for the drivers of the board that is to be added. The
drivers files for all the boards that are supported by Code Composer Studio v3.1, as

LabVIEW to CCS Link 7

long as CCS is installed to its default location, are in C:\CCStudio v3.I\drivers\
import*.ccs (file name).

Input “Options” is a 32-bit integer with specified states that are presented in Table 3.

Value State Description
Detects if the board that is about to be added, already exists
0 CLEAR ORIGINAL even with another name. If it is, then it is replaced with its

default name.

Detects if the board that is about to be added, already exists
according to its name. If it is, then it is not being added.
Detects if the board that is about to be added, already exists
2 REPLACE DUPLICATES | according to its name. If it is, then then it is replaced with
its default name.

Detects if the board that is about to be added, already exists
3 RENAME DUPLICATES | according to its name. If it is, then it is replaced with
another name.

1 NO DUPLICATES

Table 3. The states of “Options” input.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

2.1.5 CCS_Setup Rename Board.vi

The subVI CCS_Setup Rename Board.vi, shown in Figure 7, gives to the board

indicated by the input “Board” the name that is included in input “New Name”. In order to the
CCS_Setup Rename.vi to be used, at least one board has to be set to the CCStudio Setup.

CCSeé%gJSF;CCSetup Out
- error out
New Name

error in

Figure 7. The CCS_Setup Rename Board.vi
Input “CCSetup In” is a reference to CCStudio Setup.

Input “Board” is a 32-bit integer showing which board, from those that are set to
CCStudio Setup, will be renamed. If N boards are set then the input “Board” can take

8 2. Description of subVlIs in LabVIEW to CCS Link

values from zero to N-1, otherwise an error will occur. The default value of input
“Board” is zero.

Input “New Name” is a String and defines the board’s new name.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.1.6 CCS_Setup_Remove Board.vi

The subVI CCS Setup Remove Board.vi, shown in Figure 8, removes the
boardindicated by the input “Board” from the CCStudio Setup current setting. In order for the
CCS_Setup Remove Board.vi to be used at least one board has to be set to the CCStudio

Setup.
CCSetup In CCSetup Out
Board o error out

error in

Figure 8. The CCS_Setup Remove Board.vi
Input “CCSetup In” is a reference to CCStudio Setup.

Input “Board” is a 32-bit integer showing which board, from those that are set to
CCStudio Setup, will be removed. If N boards are set then the input “Board” can take
values from zero to N-1, otherwise an error will occur. The default value of input
“Board” is zero.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

LabVIEW to CCS Link 9

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.1.7 CCS_Setup_Rename_Processor.vi

The subVI CCS_Setup Rename Processor.vi shown in Figure 9, renames the processor
declared by the inputs “Processor” and “Board” according to the name indicated by the input
“ProcName”. The input “Board” defines the board that contains the specific processor, while
the input “Processor” defines the processor. In order for the CCS Setup Rename
Processor.vi to be used, at least one board has to be set to the CCStudio Setup.

ProcName
CCSetup In CCSetup Out
Board - error out
Processor
error in

Figure 9. The CCS_Setup_Rename_Processor.vi
Input“ProcName” is a String containing the name that is to be given to the processor.

Input “CCSetup In” is a reference to CCStudio Setup.

HEE

Input “Board” is a 32-bit integer showing the board’s processor that is to be renamed.
If N boards are set then the input “Board” can take values from zero to N-1, otherwise
an error will occur.The default value of input “Board” is zero.

Input “Processor” is a 32-bit integer showing the processor that is to be renamed. If the
board, that includes this processor (declared by input “Board”), has M processors then
the input “Processor” can take values from 0 to M-1, otherwise an error will occur.
The default value of input “Processor” is zero.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

10

2.1.8

2. Description of subVlIs in LabVIEW to CCS Link

CCS_Setup_Boards_&_ Processors.vi

The subVI CCS_Setup Boards & Processors.vi shown in Figure 10, returns an array to
the output “Boards & Processors” showing the current settings of CCStudio Setup.

Fab<]

2.1.9

CCSetup In E CCSetup Out
. Boards & Processors
error in T €ITOT QUL

Figure 10. The CCS_Setup Rename Processor.vi

Input “CCSetup In” is a reference to CCStudio Setup.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “Boards & Processors” is a two-dimensional array with String elements
showing the current settings of CCStudio Setup. The first element of each row has the
name of the board, while the next eclements of each row have the name of the
processor that the specific board contains. For a board named my board that contains
three processors named cpul, cpu2 and cpu3, the first element of the array’s row will
be “my board”, the second element will be “cpul”, the third element will be “cpu2”
and the fourth one will be “cpu3”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

CCS_Setup_Save.vi

The subVI CCS_Setup Save.vi, shown in Figure 11, saves the settings to CCStudio

Setup.

CCSetup In CCSetup Out
error in error out

Figure 11. The CCS_Setup_Save.vi

Input “CCSetup In” is a reference to CCStudio Setup.

LabVIEW to CCS Link 11

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCSetup Out” is a reference to CCStudio Setup.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2 CCS Automation

category are presented.

The subVlIs that belong to the CCS Automation category can fully control the Code
Composer Studio v3.1 or later and by consequence the DSP. In Table 4 the subVlIs of this

Icon Name Icon Name
E CCS_Open.vi CCS_Reset.vi
“ CCS_Close.vi Pl | CCS_Run.vi
]

gr((j)jséc?sfn_ M=3 | CCS Restart.vi
= I(,:rijse—g]oise— CCS_Halt.vi

CCS_Connect.vi CCS—.IS—D.SP—
Running.vi

CCS_Disconnect.vi

CCS_RTDX Enable.vi

CCS_Build_AllLvi

CCS_RTDX Disable.vi

CCS _Build_
Result.vi

CCS_RTDX Logfile
Configuration.vi

CCS_Download.vi

2.2.1 CCS_Open.vi

Table 4. The VIs of the CCS Automation category

The subVI CCS_Open.vi shown in Figure12 opens the CCS.

12 2. Description of subVlIs in LabVIEW to CCS Link

N r CCS Out
CCS Visible ~|s CCS Visible
error in =&

E= error out

Figure 12. The CCS_Open.vi

Input “CCS Visible” is Boolean and controls if the Parallel Debug Manager (PDM) is
going to be visible, when the CCS has been set to support more than one board.
However, when CCS is set to support onle one board then the input “CCS Visible”
defines if the Debug Window of CCS will be visible. Its default value is True.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” its a group containing information about CCS.

Output “Is CCS Visible” is Boolean and shows if the Parallel Debug Manager is
visible (as long as the multiple board support setting has been chosen) or if the Debug
Window of CCS is visible (as long as the single board support setting has been
chosen).

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.2 CCS_Close.vi

The subVI CCS_Close.vi, shown in Figure 13, closes the CCS and the relative

references.
CCSs Inuﬁmu
error in error out

Figure 13. The CCS_Close.vi

Input “CCS In” is a cluster containing information about CCS.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

LabVIEW to CCS Link 13

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.3 CCS_Open_Project.vi

The subVI CCS_Open_Project.vi, shown in Figure 14, opens the project indicated by
the input “Project Path” in the Debug Window of CCS for the board’s processor indicated by
the input “Boards & Processor”.

Project Path In CCS_Event_Notif_Out

CCSn = CCS out
Board & Processor =
error in == : error out

Debug Window Visible -’

Figure 14. The CCS_Open_Project.vi

Input “Project Path In” is a String indicating the full path of the project (file with .pjt
extension) which is about to be loaded.

Input “CCS In” is a cluster containing information about CCS.

Input “Board & Processors” is a cluster of inputs showing the board and the processor
which will be used for the project’s implementation. Input “Board & Processor” is
constituted by the below elements:

Input “Processor” is a 8-bit, unsigned integer showing the processor to be used.
Its default value is zero.

Input “Board” is a 8-bit, unsigned integer showing the board to be used. Its
default value is zero.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

[TF{

1l Input “Debug Window Visible” is Boolean and controls if the Debug Window of CCS
will be visible for the specific board and processor. Its default value is True.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.
Output “CCS Out” is a cluster containing information about CCS.

14 2. Description of subVlIs in LabVIEW to CCS Link

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.4 CCS_Close_Project.vi

The subVI CCS_Close Project.vi, shown in Figure 15, close the project and clears all
information related to that.

CCS_Event_Notif_In
CCSIn W CCs out
error in error out

Figure 15. The CCS_Close_Project.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.5 CCS_Connect.vi

The subVI CCS_Connect.vi, shown in Figure 16, gives CCS the command to connect to
the board. In fact it takes advantage of the capability of CCS v3.1 for dynamic connection to
the board. The CCS_Connect.vi has no meaning to be used when CCS has already been set to
use a simulator, because in this case the dynami connection is not supported by the CCS.

CCSIn CCS Out
Timeout — — Connection Status
EITor in =i i k= error out

Figure 16. The CCS_Connect.vi

LabVIEW to CCS Link 15

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the connection with
the card has been successfully completed. If this maximum time period has passed and
no connection has been made, an error occurs. Because of the fact that many processes
related to CCS and board communication are depended on the user’s pc, the values of
input “Timeout” may have to be increased. Its default value is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Connection Status” is a 32-bit integer with specific states that are presented

in Table 5.
Value State Description
0 CONNECTED Board has been connected to CCS
1 CONNECTING Board connect process is running
2 DISCONNECTED Board has been disconnected to CCS
3 DISCONNECTING Board disconnect process is running

Table 5. States of input “Connection Status”

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.6 CCS_Disconnect.vi

The subVI CCS Disconnect.vi shown in Figurel7 gives CCS the command to
disconnect to the board. In fact it takes advantage of the capability of CCS v3.1 for dynamic
disconnection to the board. The CCS_Disconnect.vi has no meaning to be used when CCS has
already been set to use a simulator, because in this case the dynami connection is not
supported by the CCS.

CCSIn CCS Out
Timeout — — Connection Status
EIror in =i i k= error out

Figure 17. The CCS_Disconnect.vi

Input “CCS In” is a cluster containing information about CCS.

16

2.2.7

2. Description of subVlIs in LabVIEW to CCS Link

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the disconnection
with the card has been successfully completed. If this maximum time period has
passed and no disconnection has been made, an error occurs. Because of the fact that
many processes related to CCS and board communication are depended on the user’s
pc, the values of input “Timeout” may have to be increased. Its default value is 10 sec
(10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Connection Status” is a 32-bit integer with specific states that are presented
in Table 6.

Value State Description
0 CONNECTED Board has been connected to CCS
1 CONNECTING Board connect process is running
2 DISCONNECTED Board has been disconnected to CCS
3 DISCONNECTING Board disconnect process is running

Table S. States of input “Connection Status”

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

CCS_Build_AlLvi

The subVI CCS Build All.vi, shown in Figure 18, gives the command to build the

project and to create the executable file (with .out extension) for the project and the board that
is described by the information from input “CCS In”.

CCSIn CCS Out
Timeout 4
error in = error out
Figure 18. The CCS_Close Project.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the project build has

LabVIEW to CCS Link 17

been successfully completed. If this maximum time period has passed and the project
has not been successfully built, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.8 CCS_Build_Result.vi

The subVI CCS Build Result.vi, shown in Figure 19, controls the file
cc_build Debug.log for errors, warnings or remarks that may have occurred after the project’s
build. The file cc_build Debug.log is created automatically by CCS when the build process is
completed. If CCS Build Result.vi locates an error, warning or remark and the input “Ignore
Errors From Build” is False, it passes to output “error out” an error message informing the
subVlIs that follow.

Errors
Warnings
Remarks
CCS In CCS Out
Ignore Errors From Build Build Result
error in error out

Figure 19. The CCS_Build Result.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Ignore Errors From Build” is Boolean. Its default value is False. If input
“Ignore Errors From Build” is False and an error, warning or remark has been noticed
during the build process, then an error will be passed to “error out” output informing
the subVIs that follow.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.

—_

8 2. Description of subVlIs in LabVIEW to CCS Link

Input “source” is a String describing an error.

Output “Error” is a String showing the number of errors that occurred during build
process, regardless of the value of input “Ignore Errors From Build”

Output “Warnings” is a String showing the number of warnings that occurred during
build process, regardless of the value of input “Ignore Errors From Build”

Output “Remarks” is a String showing the number of remarks that occurred during
build process, regardless of the value of input “Ignore Errors From Build”

B

Output “CCS Out” is a cluster containing information about CCS.

Output “Build Result” is a String showing showing the results from the building
process of a project, regardless of the value of input “Ignore Errors From Build”

H

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

N

2.9 CCS_Download.vi

The subVI CCS_Download.vi, shown in Figure 20, gives the command to CCS to
download the executable file (with .out extension) to DSP. During the building process of the
projects, the name of the executable must have been declared exactly as the name of the
project and its path must be set to the Debug directory (default CCS settings) otherwise the
CCS_Download.vi could not locate the specified file and an error will occur.

CCS_Event_Notif_Out

CCS_Event_Notif In

CCSn CCS Out
Timeout
error in === error out

Figure 20. The CCS_Download.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

e E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the executable file
has been successfully downloaded to the DSP. If this maximum time period has passed
and the executable file has not been downloaded to the DSP, an error occurs. Because
of the fact that many processes related to CCS and board communication are depended
on the user’s pc, the values of input “Timeout” may have to be increased. Its default
value is 10 sec (10000 msec).

LabVIEW to CCS Link 19

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.10 CCS_Reset.vi

The subVI CCS Reset.vi, shown in Figure 21 commands the DSP, through CCS, to
reset to its initial state.

CCS_Event_Notif _In
CCSIn

Timeout

€rror in ===

CCS_Event_Notif _Out
CCS Out

Figure 21. The CCS_Reset.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the reset of the DSP
has been completed successfully. If this maximum time period has passed and the reset
of the DSP has not been made, an error occurs. Because f the fact that many processes
related to CCS and board communication are depended on the user’s pc, the values of
input “Timeout” may have to be increased. Its default value is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

20 2. Description of subVlIs in LabVIEW to CCS Link

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.11 CCS_Run.vi

The subVI CCS_Run.vi, shown in Figure 22, commands the DSP, through CCS, to
initiate the execution of the progrtam.

CCSin 2 CCS Out
Timeout
error in o=k error out

Figure 22. The CCS_Run.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment that execution of the
program will be initiated by the DSP. If this maximum time period has passed and the
execution of the main program has not been started, an error occurs. Because of the
fact that many processes related to CCS and board communication are depended on
the user’s pc, the values of input “Timeout” may have to be increased. Its default value
is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

LabVIEW to CCS Link 21

2.2.12 CCS_Restart.vi

The subVI CCS_Restart.vi , shown in Figure 23, restarts the DSP’s Program Counter
from its initial value.

CCS_Event_Notif _In
CCSIn

Timeout

error in ==

CCS_Event_Notif_Out
CCS Out

error out

Reztart

Figure 23. The CCS_Restart.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the restart of the
Program Counter to its initial value has benn completed successfully. If this maximum
time period has passed and the restart of th PC has not been made, an error occurs.
Because of the fact that many processes related to CCS and board communication are
depended on the user’s pc, the values of input “Timeout” may have to be increased. Its
default value is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.13 CCS_Halt.vi

The subVI CCS_Halt.vi, shown in Figure 24, commands the DSP, through CCS, to stop
the execution of the main program. In case the CCS Halt.vi is executed when the DSP is
halted, the command is simply ignored and no error occurs.

22 2. Description of subVlIs in LabVIEW to CCS Link

CCS In CCS Out
Timeout
€rror in o=f error out

Figure 24. The CCS_Halt.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the execution of the
main program is halted. If this maximum time period has passed and the execution of
the program has not been halted by the DSP, an error occurs. Because of the fact that
many processes related to CCS and board communication are depended on the user’s
pc, the values of input “Timeout” may have to be increased. Its default value is 10 sec
(10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.14 CCS_Is_DSP_Running.vi

The subVI CCS Is DSP Running.vi, shown in Figure 25, controls if the DSP is
executing any program.

CCSIn CCS Out
_ .- DSP_State
error in t.. Running
error out

Figure 25. The CCS_Is_DSP_Running.vi
Input “CCS In” is a cluster containing information about CCS.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

LabVIEW to CCS Link 23

Output “CCS Out” is a cluster containing information about CCS.

Output “DSP_State” is a 32-bit integer showing the DSP status. The value -1 means
that the DSP is in an undefined state or the connection between the board and the CCS
has been lost. The value 0 means that the DSP has stopped the execution of a program
and the value 1 means that the DSP is running a program.

Output “Is CCS Visible” is Boolean showing if the DSP is running a program (True).

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

2.2.15 CCS_RTDX_Enable.vi

The subVI CCS_RTDX Enable , shown in Figure 26, enables and controls the RTDX

technology.
cCSIn CCS Out
RTDX Settings =
Timeout error out
error in
Figure 26. The CCS_RTDX Enable.vi
Input “CCS In” is a cluster containing information about CCS.

Input “RTDX Settings” is a cluster of inputs containing information for setting the

RTDX technology. Input “RTDX Settings” is constituted by the below elements:

Input “Mode” is a 32-bit integer with specific states, indicating the method that
the RTDX technology will follow. The value 0 means that the Non Continuous
method will be used, while the valuel means that the Continuous method will
be used. Its default value is zero (Non Continuous).

Input “Buffer Size” is a 32-bit integer, indicating the size in bytes of each
buffer that the RTDX technology uses. Its default value is 1024.

Input “Num of Buffers” is a 32-bit integer, indicating the number of buffers
that the RTDX technology uses. Its default value is 4.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the RTDX technology
is successfully enabled. If this maximum time period has passed and the RTDX
technology has not been enabled, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

24 2. Description of subVlIs in LabVIEW to CCS Link

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.2.16 CCS_RTDX Disable.vi

The subVI CCS_RTDX Disable.vi, shown in Figure 27, disables the RTDX technology.

CCS In CCS Out
Timeout
error in == . error out

Figure 27. The CCS_RTDX Enable.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the RTDX technology
is successfully disabled If this maximum time period has passed and the RTDX
technology has not been disabled, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

LabVIEW to CCS Link 25

2.2.17 CCS_RTDX_Logfile_Configuration.vi

The subVI CCS RTDX Logfile Configuration.vi, shown in Figure 28, controls the
properties of the Logfile (with .rtd extension) that the RTDX technology uses when the Non
Continuous method has been chosen.

_ CCS In CCS Out
Logfile Parameters Fﬂ
Logfile Path error out

error in m.ﬂ

Figure 28. The CCS_RTDX Enable.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Logfile Parameters” is a cluster of inputs that contain information for setting
the parameters of the Logfile that will be used from the RTDX technology, if the Non
Continuous method will be chosen. Input “Logfile Parameters” is constituted by the
below elements:

Input “FileSize” is a 32-bit integer, defining the size of the Logfile in bytes. Its
default value is 32768 bytes.

Input “FileFullMode” is a 32-bit integer with specific states, indicating the way
that the Logfile will be created. The value 0 corresponds to the Discard method
which is the default. The value 1 corresponds to the Circular method.

Input “FileOpenMode” is a 32-bit integer with specific states, indicating the
way that the Logfile will be opend. The value 0 corresponds to the RTDX
_Read Only method. The value 1 corresponds to the RTDX _Append method
and the value 2 corresponds to the RTDX Over Write method, which is the
default value .

Input “Logfile Path” is a string, defining the path that the Logfile will be craeted. Its
default value is C:\CCStudio_v3.1\cc\bin\logfile.rtd (default CCS setting).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

26 2. Description of subVlIs in LabVIEW to CCS Link

2.3 CCS Communication

The subVlIs that belong to the CCS Communication are used for data exchange between
LabVIEW and CCS. With these subVIs, the user can develop VIs that will send to and receive
from the DSP, data, either by direct DSP memory access, or by the RTDX technology. The
subVlIs of this category are presented in Table 7.

Name Icon Name
RTDX_Channel MEM_Read.vi
Disable.vi -
RTDX_Channel MEM_Write.vi
Enable.vi -
RTDX_Channel Leds Read
Status.vi (DSK6713).vi

. Leds Write
RTDX_Read.vi (DSK6713).vi

Switches Read
(DSK6713).vi

RTDX_Write.vi

MEM_Get
Address.vi

Table 7. The subVIs of the CCS Communication category

2.3.1 RTDX_ Channel_Disable.vi

The subVI RTDX Channel Disable.vi, shown in Figure 29, disables the RTDX channel
indicated by the input “Channel”.

CCSIn CCS Out
Channel
error in == error out

Figure 29. The RTDX Channel Disable.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel that will be
disabled.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 27

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.2 RTDX_Channel_Enable.vi

The subVI RTDX Channel Enable.vi, shown in Figure 30, enables the RTDX channel
indicated by the input “Channel”.

CCSIn CCS Out
C(?r?grnienl o error out

Figure 30. The RTDX Channel Enable.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel that will be
enabled.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.3 RTDX_ Channel_Status.vi

The subVI RTDX Channel Enable.vi, shown in Figure 31, designates the status of the
RTDX channel indicated by the input “Channel”.

CCSn CCS Out
Channel -~ ~ ChannelStatus
error jn == EEclE = error out

Figure 31. The RTDX Channel Status.vi

Input “CCS In” is a cluster containing information about CCS.

28

234

2. Description of subVlIs in LabVIEW to CCS Link

Input “Channel” is a String, defining the name of the RTDX channel the status of
which, will be checked.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “ChannelStatus” is a 32-bit integer with specific states designating the status of
the RTDX channel. The value 0 corresponds to the RTDX Channel Enabled status,
indicates that the channel is enabled. The value 1 corresponds to the status
RTDX Channel Disable, and it indicates that the channel is enabled and the value 2
corresponds to the Unknown status indicates that the status of channel can not be
defined.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Read.vi

The subVI RTDX Read.vi is a polymorphic VI that reads arrays and single or double

precision floating-point numbers, 8-, 16-, 32-bit signed or unsigned integers from a RTDX
channel. The RTDX Read.vi consists of a group of subVlIs that are presented in Table 8 and
will be decribed in detail shortly.

Name Name

RTDX_Read F4.vi RTDX_Read SA F4.vi

RTDX Read F8.vi RTDX_Read SA_F8.vi

RTDX_Read Il.vi RTDX_Read SA_Il.vi

RTDX_Read I2.vi RTDX_Read SA I2.vi

RTDX_Read I4.vi RTDX_Read SA I4.vi

RTDX Read Ull.vi RTDX Read SA Ull.vi

RTDX_Read UI2.vi RTDX_Read SA_UI2.vi

LabVIEW to CCS Link 29

Name Icon Name

RTDX_Read Ul4.vi

RTDX_Read SA_Ul4.vi

Table 8. The subVIs of the RTDX Read.vi

RTDX_Read_F4.vi

The subVI RTDX Read F4.vi, shown in Figure 32, reads 32-bit (4 bytes), single
precision floating-point numbers from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel Data
Timeout === @TOr OUt

error in

Figure 32. The RTDX Read F4.vi

Input “CCS In” is a cluster containing information about CCS.

d H

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, single precision floating-point number showing the content
of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read_ F8.vi

30 2. Description of subVlIs in LabVIEW to CCS Link

The subVI RTDX Read F8.vi, shown in Figure 33, reads 64-bit (8 bytes) double
precision floating-point numbers from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel Data
Timeout === @TOr OUt

error in =-==-ﬂ

Figure 33. The RTDX Read F8.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 64-bit, double precision, floating point number showing the content
of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read Il.vi

The subVI RTDX Read I1.vi, shown in Figure 34, reads 8-bit (1 byte) , signed integers
from the RTDX channel indicating by the input “Channel”.

CCSiIn CCS Out
Channel - L Data
Timeout = @ITOr OUL

error in

Figure 34. The RTDX Read I1.vi

LabVIEW to CCS Link 31

Input “CCS In” is a cluster containing information about CCS.

Input “Channel”is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an 8-bit, signed integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read I2.vi

The subVI RTDX Read I2.vi, shown in Figure 35, reads 16-bit (2 bytes), signed
integers from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel - L Data
== QITOr OUt

Timeout
error in =-==-ﬂ
Figure 35 The RTDX Read 12.vi

Input “CCS In” is a cluster containing information about CCS.

| E

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has

32

2. Description of subVlIs in LabVIEW to CCS Link

been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 16-bit, signed integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Read_I4.vi

The subVI RTDX Read I4.vi, shown in Figure 36 reads 32-bit, signed integers (4

bytes) from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel - - Data
Timeout === @ITOr Out

error in

Figure 36. The RTDX Read I4.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

LabVIEW to CCS Link 33

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, signed integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read_UIL.vi

The subVI RTDX Read UIl.vi, shown in Figure 37, reads 8-bit (1 byte), unsigned
integer from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel - L Data
Timeout == @Iror out

error in

Figure 37. The RTDX Read UIl.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

34 2. Description of subVlIs in LabVIEW to CCS Link

Output “Data” is an 8-bit, unsigned integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read_UI2.vi

The subVI RTDX Read UI2.vi, shown in Figure 38, reads 16-bit, unsigned integers (2
bytes) from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel ~ L Data
Timeout = @[TOr out

error in ===-ﬂ

Figure 38. The RTDX Read UI2.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 16-bit, unsigned integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.

LabVIEW to CCS Link 35

Output “source” is a String describing an error.

RTDX_Read_Ul4.vi

The subVI RTDX Read Ul4.vi, shown in Figure 39, reads 32-bit, unsigned integers (4

bytes) from the RTDX channel indicating by the input “Channel”.

| E

CCSIn CCS Out
Channel -~ - Data
Timeout == @[ror out

error in ===-ﬂ

Figure 39. The RTDX Read Ul4.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, unsigned integer showing the content of the specific RTDX
channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Read SA_F4.vi

The subVI RTDX Read SA F4.vi, shown in Figure 40, reads arrays consisting of 32-

bit (4 bytes), single precision, floating-point numbers from the RTDX channel indicating by
the input “Channel”.

36

2. Description of subVlIs in LabVIEW to CCS Link

CCSIn CCS Out
Channel Data
Timeout === @[TOr Out

error in

Figure 40. The RTDX Read SA F4.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 32-bit, single precision floating-point numbers
and comprises the contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Read SA_F8.vi

The subVI RTDX Read SA F8.vi, shown in Figure 41, reads arrays consisting of 64-

bit (8 bytes), double pre_cision floating-point numbers from the RTDX channel indicating by
the input “Channel”.

CCSn CCS Out
Channel Data
Timeout == @IT0r Out

error in

Figure 41. The RTDX Read SA F8.vi

LabVIEW to CCS Link 37
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

E Output “Data” is an array consisting of 64-bit (8 bytes), double precision floating-
point numbers and comprises the contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_ Read SA Il.vi

The subVI RTDX Read SA I1.vi, shown in Figure 42, reads arrays consisting of 8-bit,
signed integers (1 byte) from the RTDX channel indicating by the input “Channel”.

CCSiIn CCS Out
Channel - L Data
Timeout === @TOr Out

error in

Figure 42. The RTDX Read SA Il.vi

Input “CCS In” is a cluster containing information about CCS.

i B

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read

38 2. Description of subVlIs in LabVIEW to CCS Link

process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

frz]| Qutput “Data” is an array consisting of 8-bit, signed integers and comprises the
contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_ Read SA_I2.vi

The subVI RTDX Read SA I2.vi, shown in Figure 43, reads arrays consisting of 16-
bit, signed integers (2 bytes) from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel ~ L Data
Timeout == @fTor out

error in

Figure 43. The RTDX Read SA I2.vi

Input “CCS In” is a cluster containing information about CCS.

i B

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

LabVIEW to CCS Link 39

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

fusl| Qutput “Data” is an array consisting of 16-bit, signed integers and comprises the
contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX Read SA_I4.vi

The subVI RTDX Read SA I4.vi, shown in Figure 44, reads arrays consisting of 32-
bit, signed integers (4 bytes) from the RTDX channel indicating by the input “Channel”.

CCSiIn CCS Out
Channel ~ L Data
Timeout == @fror out

error in

Figure 44. The RTDX_Read SA_I4.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

21| Qutput “Data” is an array consisting of 32-bit, signed integers and comprises the
contents of the specific RTDX channel.

40 2. Description of subVlIs in LabVIEW to CCS Link

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX Read SA_UIL.vi

The subVI RTDX Read SA Ull.vi, shown in Figure 45, reads arrays consisting of 8-
bit (1 byte), unsigned integers from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel - L Data
Timeout == @rror out

error in
Figure 45. The RTDX Read SA Ull.vi

Input “CCS In” is a cluster containing information about CCS.

i B

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

fus]| Qutput “Data” is an array consisting of 8-bit, unsigned integers and comprises the
contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

LabVIEW to CCS Link 41
RTDX_Read_SA_UI2.vi

The subVI RTDX Read SA UI2.vi, shown in Figure 46, reads arrays consisting of 16-
bit, unsigned integers (2 bytes) from the RTDX channel indicating by the input “Channel”.

CCSIn CCS Out
Channel - L Data
Timeout === @TOr OUt

error in
Figure 46. The RTDX Read SA Ul2.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

fwis]| Qutput “Data” is an array consisting of 16-bit, unsigned integers and comprises the
contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Read SA_UlI4.vi

The subVI RTDX Read SA Ul4.vi, shown in Figure 47, reads arrays consisting of 32-
bit, unsigned integers (4 bytes) from the RTDX channel indicating by the input “Channel”.

42

2.3.5

2. Description of subVlIs in LabVIEW to CCS Link

CCSIn CCS Out
Channel -~ = Data
Timeout === g[ror out

error in ===ﬂ

Figure 47. The RTDX_Read SA_Ul4.vi
Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 32-bit, unsigned integers and comprises the
contents of the specific RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Write.vi

The subVI RTDX Write.vi is a polymorphic VI that writes arraysa nd single or double

precision floating-point numbers, 8-, 16-, 32-bit signed or unsigned integers to a RTDX
channel. The RTDX Write.vi consists of a group of subVIs that are presented in Table 9 and
will be decribed in detail shortly.

Name Name

RTDX_Write F4.vi RTDX_Write SA_F4.vi

RTDX_Write F8.vi RTDX_Write SA_F8.vi

LabVIEW to CCS Link 43

Name Name

RTDX_Write I1.vi RTDX_Write SA_Il.vi

RTDX_ Write 12.vi RTDX_ Write SA I2.vi

RTDX_Write I4.vi RTDX_Write SA_I4.vi

RTDX Write UIL.vi RTDX Write SA UIl.vi

RTDX Write UI2.vi RTDX Write SA UI2.vi

RTDX_Write UI4.vi RTDX_Write SA_UI4.vi

Table 9. The subVIs of theRTDX Write.vi
RTDX Write F4.vi

The subVI RTDX Write F4.vi, shown in Figure 48, writes arrays that contain 32-bit (4
bytes), single precision floating-point numbers to the RTDX channel indicating by the input
“Channel”.

Timeout
CCSIn
Channel -4

CCS Out

error out

Figure 48. The RTDX Write F4.vi

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

dE

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

B

Input “Data” is a 32-bit, single precision, floating point number, containing the data
that will be written to the RTDX channel.

g

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

44 2. Description of subVlIs in LabVIEW to CCS Link

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Write_F8.vi

The subVI RTDX Write F8.vi, shown in Figure 49 writes 64-bit (8 bytes), double
precision floating-point numbers to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In
Channel -

Data

error in =====H

CCS Out

error out

Figure 49. The RTDX Write F8.vi

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

i B

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

o

Input “Data” is 64-bit, single precision floating-point number, containing the data that
will be written to the RTDX channel.

l

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.

LabVIEW to CCS Link 45

Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Write Il.vi

The subVI RTDX Write I1.vi, shown in Figure 50, writes 8-bit, signed integers (1
byte) to the RTDX channel indicating by the input “Channel”.

Timeout
CCSIn CCS Out
Channel -
Data error out
error in -
Figure 50. The RTDX Write I1.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an 8-bit, signed integer, containing the data that will be written to the
RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.
Output “CCS Out” is a cluster containing information about CCS.
Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Write I2.vi

46 2. Description of subVlIs in LabVIEW to CCS Link

The subVI RTDX Write 12.vi, shown in Figure 51, writes 16-bit, signed integers (2
bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In CCS Out
Channel -

error out

Data
error in ===-ﬂ

Figure 51. The RTDX Write 12.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is a 16-bit, signed integer, containing the data that will be written to the
RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.
Output “CCS Out” is a cluster containing information about CCS.
Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Write I4.vi

The subVI RTDX Write 14.vi, shown in Figure 52, writes 32-bit, signed integers (4
bytes) to the RTDX channel indicating by the input “Channel”.

LabVIEW to CCS Link 47

E

d H

E

g

Timeout
CCSIn CCS Out
Channel .
Data error out
error in eed

Figure 52. The RTDX_ Write 14.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is a 32-bit, signed integer, containing the data that will be written to the
RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Write UIl.vi

The subVI RTDX Write Ull.vi, shown in Figure 53, writes 8-bit (1 byte), unsigned

integers to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In CCS Out
Channel -
Data error out

Figure 53. The RTDX_Write_UI1.vi

E %

B

B

2. Description of subVlIs in LabVIEW to CCS Link

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an 8-bit, unsigned integer, containing the data that will be written to
the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Write_UI2.vi

The subVI RTDX Write UI2.vi, shown in Figure 54, writes 16-bit, unsigned integers (2

bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In CCS Out
Channel -

Data error out

Figure 54. The RTDX_Write_UI2.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

LabVIEW to CCS Link 49

d H

g

g

o

o

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is a 16-bit, unsigned integer, containing the data that will be written to
the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Write_Ul4.vi

The subVI RTDX Write UlI4.vi, shown in Figure 55, writes 32-bit, unsigned integers (4

bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCSIn CCS Out
Channel -

error out

Data
error in -
Figure 55. The RTDX Write Ul4.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

2. Description of subVlIs in LabVIEW to CCS Link

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is a 32-bit, unsigned integer, containing the data that will be written to
the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX_Write SA_F4.vi

The subVI RTDX Write SA F4.vi, shown in Figure 56, writes arrays that consist of

32-bit (4 bytes), single precision floating-point numbers to the RTDX channel indicating by
the input “Channel”.

Timeout
CCS In CCS Out
Channel
Data error out
error in =-==-ﬂ

Figure 56. The RTDX Write SA F4.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 32-bit, single precision floating-point numbers
containing the data that will be written to the RTDX channel.

LabVIEW to CCS Link 51

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX Write SA F8.vi

The subVI RTDX Write SA F8.vi, shown in Figure 57, writes arrays that consist of
64-bit (8 bytes), double precision floating-point numbers to the RTDX channel indicating by
the input “Channel”.

Timeout
CCSIn CCS Out
Channel

Data error out
error in =====H

Figure 57. The RTDX_Write SA_F8.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

» Input “Data” is an array that consists of 64-bit (8 bytes), double precision floating-
point numbers containing the data that will be written to the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

52 2. Description of subVlIs in LabVIEW to CCS Link

Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_Write_SA_Il.vi

The subVI RTDX Write SA I1.vi, shown in Figure 58, writes arrays that consist of 8-
bit, signed integers (1 byte) to the RTDX channel indicating by the input “Channel”.

Timeout
CCSIn CCS Out
Channel

Data error out
error in =-==-ﬂ

Figure 58. The RTDX_Write SA_Il.vi

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

i B

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

—
-
o

Input “Data” is an array that consists of 8-bit, signed integers containing the data that
will be written to the RTDX channel.

l

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 53

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_ Write SA_I2.vi

The subVI RTDX Write SA 12.vi, shown in Figure 59, writes arrays that consist of 16-
bit, signed integers (2 bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In CCS Out
Channel
Data error out

error in ===ﬂ

Figure 59. The RTDX Write SA 12.vi

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

d H

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

—
=
-
m

Input “Data” is an array that consists of 16-bit, signed integers containing the data that
will be written to the RTDX channel.

i

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

54 2. Description of subVlIs in LabVIEW to CCS Link

RTDX_ Write SA_I4.vi

The subVI RTDX Write SA 14.vi, shown in Figure 60, writes arrays that consist of 32-
bit, signed integers (4 bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCSIn CCS Out
Channel
error out

Data
error in “J

Figure 60. The RTDX Write SA I4.vi

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

d H

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 32-bit, signed integers containing the data that
will be written to the RTDX channel.

g

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX Write SA_ Ull.vi

The subVI RTDX Write SA Ull.vi, shown in Figure 61, writes arrays that consist of
8-bit (1 byte), unsigned integers to the RTDX channel indicating by the input “Channel”.

LabVIEW to CCS Link 55

E

d H

g

Timeout
CCSIn CCS Out
Channel
error out

Data
error in “J
Figure 61. The RTDX Write SA Ull.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 8-bit, unsigned integers containing the data
that will be written to the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

RTDX Write SA_ Ul2.vi

The subVI RTDX Write SA Ul2.vi, shown in Figure 62, writes arrays that consist of

16-bit, unsigned integers (2 bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCS In CCS Out
Channel
Data error out

error in ====ﬂ

Figure 62. The RTDX Write SA UlI2.vi

56 2. Description of subVlIs in LabVIEW to CCS Link

E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “CCS In” is a cluster containing information about CCS.

d H

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 16-bit, unsigned integers containing the data
that will be written to the RTDX channel.

g

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

= Output “CCS Out” is a cluster containing information about CCS.

=z QOutput “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

RTDX_ Write SA_UlI4.vi

The subVI RTDX Write SA Ul4.vi, shown in Figure 63, writes arrays that consist of
32-bit, unsigned integers (4 bytes) to the RTDX channel indicating by the input “Channel”.

Timeout
CCSIn CCS QOut
Channel
error out

Data
error in d
Figure 63. The RTDX Write SA Ul4.vi

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

LabVIEW to CCS Link 57

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 32-bit, unsigned integers containing the data
that will be written to the RTDX channel.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.
Output “CCS Out” is a cluster containing information about CCS.
Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.6 MEM_Get_Address.vi

The subVI MEM_Get Address.vi, shown in Figure 64, locates the page and the address
on DSP memory where the symbol indicated by the input “Symbol Name” is saved. The term
symbol means an array or variable of any type that has already been set in the CCS project. If
it is for an array the MEM Get Address.vi will return the page and address on DSP
memorywhere the first element of the array is saved. The symbol is suggested to be global.

CCSIn = CCS Out
Symbol Name - Eﬁla = Page & Address
error in - error out

Figure 64. The MEM_Get Address.vi

Input “CCS In” is a cluster containing information about CCS.

dE

Input “Symbol Name” is a String defining the name of the symbol. The symbol must
have already been set to the project otherwise an error will occur.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

58 2. Description of subVlIs in LabVIEW to CCS Link

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “Page & Address” is a cluster providing information for the page and address
in DSP memory where the symbol indicated by the input “Symbol Name” is saved.
Output “Page & Address” is constituted by the below elements:

Output “Page” is a 16-bit integer, showing the page of the DSP memory in
which the symbol is saved.

Output “Address” is an unsigned integer in hexadecimal representation,
showing the address of the DSP memory where the symbol is saved.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.7 MEM_Read.vi

The subVI MEM Read.vi is a polymorphic VI having the capability to read rows of
Strings, arrays and single or double precision floating-point numbers, 8-, 16-, 32-bit signed or
unsigned integers from the DSP memory by direct memory access. The MEM_ Read.vi
consists of subVlIs that is presented in Table 10 and will be described shortly in detail.

Icon Name Icon Name

E MEM Read F4.vi ﬁ MEM Read A F4.vi
E=| MEM Read F8.vi E=| MEM Read A F8.vi
E=| MEM_Read I1.vi E=| MEM_ Read A I1.vi
E—_l MEM Read 12.vi E—_l MEM Read A I2.vi
E=| MEM Read I4.vi E=| MEM Read A I4.vi
= MEM Read Ull.vi g MEM Read A Ull.vi
E—_l MEM Read UI2.vi E—_l MEM Read A Ul2.vi
E=| MEM Read Ul4.vi E=| MEM Read A Ul4.vi
E=| MEM Read String.vi

Table10. The subVIs of the MEM_Read.vi

LabVIEW to CCS Link 59

MEM_Read_F4.vi

The subVI MEM Read F4.vi, shown in Figure 65, reads 32-bit (4 bytes), single

precision floating-point numbers starting from the DSP memory address and page indicated
by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address k= error out
error in

Figure 65. The MEM_Read F4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.
Output “Data” is a 32-bit, single precision floating-point number designating the
content of the DSP memory starting from the memory location indicated by the input

“Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

60 2. Description of subVlIs in LabVIEW to CCS Link

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Read_F8.vi

The subVI MEM_Read F8.vi, shown in Figure 66, reads double precision floating-point
numbers tov 64 bits (8 bytes) starting from the DSP memory address and page indicated by
the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSn CCS Out
Timeout -, Data
Page & Address ==j k= error out
error in

Figure 66. The MEM_Read F8.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 61

Output “Data” is a 64-bit, double precision, floating point number designating the
content of the DSP memory starting from the memory location indicated by the input
“Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Read_Il.vi

The subVI MEM Read I1.vi, shown in Figure 67, reads 8-bit, signed integers (1 byte)
from the DSP memory address and page indicated by the input “Page & Address” by direct
memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSn CCS Out
Timeout Data
Page & Address i pr-lill—==s E= error out
error in === ’

Figure 66. The MEM_Read I1.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

b (o)
H 2

B

H

2. Description of subVlIs in LabVIEW to CCS Link

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an 8-bit, signed integer designating the content of the DSP memory
location indicated by the input “Page & Number™..

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read_I2.vi

The subVI MEM_Read I2.vi, shown in Figure 68, reads 16-bit, signed integers (2

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSn CCS Out
Timeout | Data
Page & Address == === i %= error out
error in === .

Figure 68. The MEM_Read 12.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

LabVIEW to CCS Link 63

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 16-bit, signed integer designating the content of the DSP memory
starting from the memory location indicated by the input “Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Read_I4.vi

The subVI MEM Read I4.vi, shown in Figure 69, reads 32-bit, signed integers (4
bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address == =M= B= error out

error in == ’

Figure 69. The MEM_Read 14.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

64 2. Description of subVlIs in LabVIEW to CCS Link

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, signed integer designating the content of the DSP memory
starting from the memory location indicated by the input “Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Read_UlL.vi

The subVI MEM_Read Ull.vi, shown in Figure 70, reads 8-bit (1 byte), unsigned
integers from the DSP memory address and page indicated by the input “Page & Address” by
direct memory access.

CCS_Event_Notif_Out
CCSIn CCS Out
Timeout Data
Page & Address mﬂ """""""" = error out
error in === 3

CCS_Event_Notif_In

Figure 66. The MEM_Read Ull.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

LabVIEW to CCS Link 65

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

g

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

E [

Output “Data” is an 8-bit, unsigned integer designating the content of the DSP
memory location indicated by the input “Page & Number™..

H

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read_UI2.vi

The subVI MEM_ Read Ul2.vi, shown in Figure 71, reads 16-bit, unsigned integers (2
bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address “““E """""""" = error out

error in == :

Figure 71. The MEM_Read UI2.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many

66

g

g E B

H

2. Description of subVlIs in LabVIEW to CCS Link

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 16-bit, unsigned integer designating the content of the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read_Ul4.vi

The subVI MEM_Read Ul4.vi, shown in Figure 72, reads 32-bit, unsigned integers (4

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address mﬂ """""""" %= error out

error in ===
Figure 72. The MEM_Read Ul4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

LabVIEW to CCS Link 67

g

g H B

H

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, unsigned integer designating the content of the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read_String.vi

The subVI MEM Read String.vi, shown in Figure 73, reads a string starting from the

DSP memory address and page indicated by the input “Page & Address” by direct memory
access. The number of strings is defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

cCSin CCS Out
Timeout i Data
Page & Address == Il k= error out
error in ===
Size

Figure 73. The MEM_Read_String.vi

n o)
E &

e E

d

E5

| H

H B

2. Description of subVlIs in LabVIEW to CCS Link

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of strings that will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a String designating the content of the DSP memory starting from the
memory location indicated by the input “Page & Number”. The number of strings that
the output “Data” contains, is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM Read A _F4.vi

The subVI MEM_Read A F4.vi, shown in Figure 74, reads arrays consisting of 32-bit

(4 bytes), single precision, floating-point numbers starting from the DSP memory address and
page indicated by the input “Page & Address” by direct memory access. The number of
elements in the array is defined by the input “Size”.

LabVIEW to CCS Link 69

l

g

B

H

-

B

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address = error out
error in
Size

Figure 74. The MEM_Read A F4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 32-bit, single precision floating-point numbers
designating the content of the DSP memory starting from the memory location
indicated by the input “Page & Number”. The number of elements in the array is
defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

70 2. Description of subVlIs in LabVIEW to CCS Link

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM _Read A_F8.vi

The subVI MEM Read A F8.vi, shown in Figure 75, reads arrays consisting of 64-bit,
single precision floating-point numbers starting from the DSP memory address and page
indicated by the input “Page & Address” by direct memory access. The number of elements in
the array is defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout -,) Data
Page & Address == =i = error out
error in ==

Size
Figure 75. The MEM_Read A FS8.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

LabVIEW to CCS Link 71

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of double precision floating-point numbers tov
64 bits designating the content of the DSP memory starting from the memory location
indicated by the input “Page & Number”. The number of elements in the array is
defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM _Read A _Il.vi

The subVI MEM_ Read A I1.vi, shown in Figure 76, reads arrays consisting of 8-bit,

signed integers (1 byte) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout) Data
Page & Address R = error out
error in === :
Size

Figure 76. The MEM_Read A Il.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

g

E

B

[}
[
L]

—

o

2. Description of subVlIs in LabVIEW to CCS Link

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 8-bit, signed integers designating the content
of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM _Read A _I2.vi

The subVI MEM_Read A 12.vi, shown in Figure 77, reads arrays consisting of 16-bit,

signed integers (2 bytes) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

e E

CCS_Event_Notif_In CCS_Event_Notif _Out

CCSIn CCS Out
Timeout Data
Page & Address ==t Rl o000 o)t

error in e j
Size

Figure 77. The MEM_Read A 12.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

LabVIEW to CCS Link 73

E

B

-

I16

i

B

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 16-bit, signed integers designating the content
of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read A_I4.vi

The subVI MEM Read A I4.vi, shown in Figure 78, reads arrays consisting of 32-bit,

signed integers (4 bytes) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCS In CCS Out
Timeout) Data
Page & Address == [=—Ragill=—=== k= error out
error in === .
Size

Figure 78. The MEM_Read A I4.vi

" -
E N

e E

d

E5

E

132

[
.t

2. Description of subVlIs in LabVIEW to CCS Link

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 32-bit, signed integers designating the content
of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Read_A_UIl.vi

The subVI MEM_ Read A Ull.vi, shown in Figure 79, reads arrays consisting of 8-bit

(1 byte), unsigned integers starting from the DSP memory address and page indicated by the

LabVIEW to CCS Link 75

input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address i ol il L error out
error in s d
Size

Figure 79. The MEM_Read A UIl.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

l

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

d

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

B

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

(e
=
=

—

Output “Data” is an array consisting of 8-bit, unsigned integers designating the content
of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

76 2. Description of subVlIs in LabVIEW to CCS Link

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM _Read A_UIL2.vi

The subVI MEM Read A UI2.vi, shown in Figure 80, reads arrays consisting of 16-bit,
unsigned integers (2 bytes) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address e == %= error out
€rror in s d

Size
Figure 80. The MEM_Read A UI2.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

LabVIEW to CCS Link 77

£16]

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 16-bit, unsigned integers designating the
content of the DSP memory starting from the memory location indicated by the input
“Page & Number”. The number of elements in the array is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM _Read A_Ul4.vi

The subVI MEM Read A Ul4.vi, shown in Figure 81 reads arrays consisting of 32-bit,

unsigned integers (4 b}Res) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access. The number of elements in the array is
defined by the input “Size”.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout Data
Page & Address i Ry Hilhrcrmrs k= error out
€rror in e== :
Size

Figure 81. The MEM_Read A Ul4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

g

E

B

T
B

o

2.3.8

2. Description of subVlIs in LabVIEW to CCS Link

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an array consisting of 32-bit, unsigned integers designating the
content of the DSP memory starting from the memory location indicated by the input
“Page & Number”. The number of elements in the array is defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_ Write.vi

The subVI MEM_Write.vi is a polymorphic VI having the capability to write rows of

strings, arrays and single or double precision floating-point numbers, 8-, 16-, 32-bit signed or
unsigned integers to DSP memory by direct memory access. The MEM_Write.vi consists of
subVIs that is presented in Table 11 and will be described shortly in detail.

Name Icon Name

MEM_Write F4.vi B | MEM Write A Favi

MEM_ Write F8.vi MEM_Write A_F8.vi

MEM Write I1.vi MEM_ Write A _I1.vi

MEM_Write_12.vi MEM_Write A _I2.vi

MEM_Write 14.vi MEM_ Write A I4.vi

MEM Write UIl.vi MEM Write A_UIl.vi

I | TN | TR | T | R Eﬂl_ﬂlla

N | N | | S | O | T | O |

MEM_Write UI2.vi MEM_Write A_UI2.vi

LabVIEW to CCS Link 79

Icon Name Icon Name

% MEM_ Write Ul4.vi E MEM_ Write A Ul4.vi
E MEM_Write String.vi

Table 11. The subVIs of the MEM_ Write.vi

MEM_Write_F4.vi

The subVI MEM_ Write F4.vi, shown in Figure 82, writes 32-bit (4 bytes), single

precision floating-point numbers starting from the DSP memory address and page indicated
by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn i E=| CCS Out
Timeout
Page & Address = error out
error in
Data

Figure 82. The MEM_Write F4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

80

2. Description of subVlIs in LabVIEW to CCS Link

Input “Data” is a 32-bit, single precision floating-point number that will be written to
the DSP memory starting from the memory location indicated by the input “Page &
Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write_F8.vi

The subVI MEM_Write F8.vi, shown in Figure 83 writes 64-bit (8 bytes), double

precision floating-point numbers starting from the DSP memory address and page indicated
by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In N E=| CCS Out
Timeout
Page & Address = error out
error in
Data

Figure 83. The MEM_Write F8.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

LabVIEW to CCS Link 81

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Input “Data” is a 64-bit, single precision, floating-point numberthat will be written to
the DSP memory starting from the memory location indicated by the input “Page &
Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write_I1.vi

The subVI MEM_Write I1.vi, shown in Figure 84, writes 8-bit, signed integers (1 byte)
to the page and memory location indicated by the input “Page & Number” by direct memory
access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In b ——l CCS Out
Timeout =
Page & Address error out
error in
Data

Figure 84. The MEM_Write I1.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

e E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

82

g

g B

2. Description of subVlIs in LabVIEW to CCS Link

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an 8-bit, signed integer that will be written to the DSP memory starting
from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write_I2.vi

The subVI MEM_Write 12.vi, shown in Figure 85 writes 16-bit, signed integers (2

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

e E

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn N E=| CCS Out
Timeout)
Page & Address error ou
error in]
Data

Figure 85. The MEM_Write 12.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.
Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write

LabVIEW to CCS Link &3

i B

B B

process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is a 16-bit, signed integer that will be written to the DSP memory starting
from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write_I4.vi

The subVI MEM_ Write 14.vi, shown in Figure 86, writes 32-bit, signed integers (4

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

CCS_Event_Noaotif_In CCS_Event_Notif_Out
CCSIn , E=| CCS Out
Timeout X
Page & Address error ou
error in -
Data

Figure 86. The MEM_Write 14.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

g

i B

2. Description of subVlIs in LabVIEW to CCS Link
Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is a 32-bit, signed integer that will be written to the DSP memory starting
from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write UIL.vi

The subVI MEM_Write Ull.vi, shown in Figure 87, writes 8-bit (1 byte), unsigned

integers to the page and memory location indicated by the input “Page & Number” by direct
memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn N E=| CCS Out
Timeout .
Page & Address error ou
error in]
Data

Figure 87. The MEM_Write Ull.vi

LabVIEW to CCS Link 85

g

d

B

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an 8-bit, unsigned integer that will be written to the DSP memory
starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write UI2.vi

The subVI MEM_Write UI2.vi, shown in Figure 88, writes 16-bit, unsigned integers (2

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

86

g

E

H

B B

2. Description of subVlIs in LabVIEW to CCS Link

CCS_Event_Notif_In CCS_Event_Notif _Out
CCSIn . E=| CCS Out
Timeout)
Page & Address error ou
error in ====E
Data

Figure 88 The MEM_Write UI2.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is a 16-bit, unsigned integer that will be written to the DSP memory
starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

LabVIEW to CCS Link 87

MEM_Write_Ul4.vi

The subVI MEM_Write Ul4.vi, shown in Figure 89, writes 32-bit, unsigned integers (4

bytes) starting from the DSP memory address and page indicated by the input “Page &
Address” by direct memory access.

g

i H

B B

CCS_Event_Notif _In CCS_Event_Notif_Out
CCS In , =| CCS Out
Timeout E
Page & Address error out
error in
Data

Figure 89. The MEM_Write Ul4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is a 16-bit, unsigned integer that will be written to the DSP memory
starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

88 2. Description of subVlIs in LabVIEW to CCS Link

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write_String.vi

The subVI MEM_Write String.vi, shown in Figure 90, writes a string starting from the
DSP memory address and page indicated by the input “Page & Address” by direct memory
access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn CCS Out
Timeout
Page & Address error out
error in
Data

Figure 90 The MEM_Write String.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Input “Data” is a string that will be written to the DSP memory starting from the
memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

LabVIEW to CCS Link 89

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write_ A_F4.vi

The subVI MEM_Write A F4.vi, shown in Figure 91, writes an array that consists of
32-bit (4 bytes), single precision floating-point numbers starting from the DSP memory
address and page indicated by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out

CCSIn o =| CCS Out
Timeout Fﬁ
Page & Address = error out
error in

Data

Figure 91 The MEM_Write A _F4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

90 2. Description of subVlIs in LabVIEW to CCS Link

¥ Input “Data” is an array from 32-bit, single precision, floating-point numbers, that will
be written to the DSP memory starting from the memory location indicated by the
input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write A F8.vi

The subVI MEM_ Write A _F8.vi, shown in Figure 92 writes an array that consists of
double precision floating-point numbers tmv 64 bits (8 bytes) starting from the DSP memory
address and page indicated by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In b =| CCS Out
Timeout =
Page & Address error out
error in -
Data

Figure 92 The MEM_Write A _F8.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

LabVIEW to CCS Link 91

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an array from 64-bit, double precision floating-point numbers, that will
be written to the DSP memory starting from the memory location indicated by the
input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write_A_I1.vi

The subVI MEM_Write A 11.vi, shown in Figure 93, writes an array that consists of 8-

bit, signed integers (1 l;yte) starting from the DSP memory address and page indicated by the
input “Page & Address” by direct memory access.

e E

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In s =| CCS Out
Timeout =
Page & Address error out
error in
Data

Figure 93 The MEM_Write A 11.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

92

g

g B

2. Description of subVlIs in LabVIEW to CCS Link

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an array from 8-bit, signed integers that will be written to the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write_A_12.vi

The subVI MEM_Write A 12.vi, shown in Figure 94, writes an array that consists of

16-bit, signed integers (2 bytes) starting from the DSP memory address and page indicated by
the input “Page & Address” by direct memory access.

e E

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn , E=| CCS Out
Timeout .
Page & Address error ou
error in]
Data

Figure 94 The MEM_Write A 12.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.
Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write

LabVIEW to CCS Link 93

process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an array consisted of 16-bits signed integers that will be written to the
DSP memory starting from the memory location indicated by the input “Page &
Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

MEM_Write A_I4.vi

The subVI MEM_Write A I4.vi, shown in Figure 95, writes an array that consists of

32-bit, signed integers (8 bytes) starting from the DSP memory address and page indicated by
the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn . E=| CCS Out
Timeout .
Page & Address error ou
error in]
Data

Figure 95 The MEM_Write A _I4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

94 2. Description of subVlIs in LabVIEW to CCS Link

Input “CCS In” is a cluster containing information about CCS.

e E

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Input “Data” is an array consisted of 32-bits signed integers that will be written to the
DSP memory starting from the memory location indicated by the input “Page &
Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write A_UIL.vi

The subVI MEM_Write A Ull.vi, shown in Figure 96, writes an array that consists of
8-bit (1 byte), unsigned integers starting from the DSP memory address and page indicated by
the input “Page & Address” by direct memory access.

LabVIEW to CCS Link 95

g

—
=
-]

H

B B

CCS_Event_Notif_Out

CCS_Event_Notif_In

CCSIn = CCS Out
Timeout El
Page & Address error out
error in
Data

Figure 96 The MEM_Write A UIl.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &

Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.

Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Input “Data” is an array of an 8-bit, unsigned integers that will be written to the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

96 2. Description of subVlIs in LabVIEW to CCS Link
MEM_Write A_UI2.vi
The subVI MEM_Write A Ul2.vi, shown in Figure 97, writes an array that consists of

16-bit, unsigned integers (2 bytes) starting from the DSP memory address and page indicated
by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn 3 E=| CCS Out
Timeout ‘
Page & Address error ou
error in ====ﬂ
Data

Figure 97 The MEM_Write A UI2.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

g

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

s
5

Input “Data” is an array from 16-bit, unsigned integers that will be written to the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

B B

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

LabVIEW to CCS Link 97

Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

MEM_Write A_Ul4.vi

The subVI MEM_Write A Ul4.vi, shown in Figure 98, writes an array that consists of
32-bit, unsigned integers (8 bytes) starting from the DSP memory address and page indicated
by the input “Page & Address” by direct memory access.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In b =| CCS Out
Timeout E
Page & Address error out
error in
Data

Figure 98 The MEM_Write A Ul4.vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
Input “Address” is an unsigned integer in hexadecimal representation, showing
the address of the DSP memory.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

LM Input “Data” is an array from 32-bit, unsigned integers, that will be written to the DSP
memory starting from the memory location indicated by the input “Page & Number”.

98 2. Description of subVlIs in LabVIEW to CCS Link
Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.
Output “CCS Out” is a cluster containing information about CCS.
Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.
2.3.9 Leds Read (DSK6713).vi

The subVI Leds Read (DSK6713).vi, shown in Figure 99, return to the output
“Leds Value”, the status of the the four leds on Spectrum Digital’s DSK C6713 in
hexadecimal representaion.

The status of the four leds is represented by a 4-digit bynary number, where each bit
corresponds to a led. The most significant digit corresponds to led 3 and the least significant
to led 0. Each led is supposed to have the value 1 when it’s on otherwise the value is 0.
Consequently the output “Leds Value” takes values from 0 to 15. If the value of the output
“Leds Value” is 10, in hexadecimal representation, only the leds 1 and 3 are on.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCSIn CCS Out
Timeout Leds Value
eIror In === = error out

Figure 99. The Leds Read (DSK6713).vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process of
the status of the leds has been completed successfully. If this maximum time period
has passed and the status of the leds has not been read, an error occurs. Because of the
fact that many processes related to CCS and board communication are depended on
the user’s pc, the values of input “Timeout” may have to be increased. Its default value
is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

LabVIEW to CCS Link 99

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Leds Value” is an 8-bit, unsigned integer indicating the leds’ status in
hexadecimal representation on DSK C6713. Output “Leds Value” takes values from 0
to 15.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.10 Leds Write (DSK6713).vi

The subVI Leds Write (DSK6713).vi, shown in Figure 100, writes the four leds’ status
on DSKC6713 according to the value of input “Leds Value”. Input “Leds Value” takes
values from 0 to 15.

The status of the four leds is represented by a 4-bit binary number, where each bit
corresponds to a led. The most significant digit corresponds to led 3 and the least significant
to led 0. Each led is supposed to have the value 1 when it’s on otherwise the value is 0. If the
value of the input “Leds Value”, is 12, in hexadecimal representation, the
Leds Write (DSK6713) will change the leds status, so that only leds 2 and 3 will be on, in
spite of their previous status.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In CCS Out
dT|me<?ut
Leds_Value error out
error in e

Figure 100. The Leds Write (DSK6713).vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process of
the status of the leds has been completed successfully. If this maximum time period
has passed and the status of the leds has not been written, an error occurs. Because of
the fact that many processes related to CCS and board communication are depended
on the user’s pc, the values of input “Timeout” may have to be increased. Its default
value is 10 sec (10000 msec).

100 2. Description of subVlIs in LabVIEW to CCS Link

Input “Leds Value” is an 8-bit, unsigned integer defines the new status of the leds on
DSK C6713, in hexadecimal representation. Input “Leds Value” takes values from 0
to 15.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.
Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.
Output “source” is a String describing an error.

2.3.11 Switches_Read_(DSK6713).vi

The subVI Switches Read (DSK6713).vi, shown in Figure 101, return to the output
“Switches Value” the status of the four switches on Spectrum Digital’s DSK C6713, in
hexadecimal representation.

The status of the four switches is represented by a 4-digit binary number, where every
digit corresponds to a switch. The most significant digit corresponds to switch 3, while the
least significant digit corresponds to switch 0. Each switch is supposed to have the value 1
when it’s open (OFF status) otherwise the value is 0. Consequently the output
“Switches Value” takes values from 0 to 15. If the value of output “Switches Value”, in
hexadecimal representation, is 5 means that the switches 0 and 2 are open while 1 and 3 are
closed.

CCS_Event_Notif_In CCS_Event_Notif_Out
CCS In CCS Out
Timeout Switches_Value
eIror In == = error out

Figure 101. The Switches Read (DSK6713).vi

Input “CCS_Event Notif In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

El

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process of
the status of the switches has been completed successfully. If this maximum time

LabVIEW to CCS Link 101

period has passed and the status of the switches has not been read, an error occurs.
Because of the fact that many processes related to CCS and board communication are
depended on the user’s pc, the values of input “Timeout” may have to be increased. Its
default value is 10 sec (10000 msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.

Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

Output “CCS_Event Notif Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Switches Value” is an 8-bit, unsigned integer indicating the status of the
swiches on DSK C6713, in hexadecimal representation. Output “Switches Value”
takes values from 0 to 15.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.

Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

102 3. Using the LabVIEW to CCS Link

3. Using the LabVIEW to CCS Link

With LabVIEW and LabVIEW to CCS Link, the user can develop in a fast and easy way
Vis that will control and communicate with DSPs applications. It must be clear that the Vis
developed with LabVIEW and LabVIEW to CCS Link do not create executable code for the
DSP module. At first, the application must be designed in Code Composer Studio and next the
user has to develop the VI that will manage it. In this point we emphasize on the way of
developing a VI that will control the application.

In paragraphs that follow, we try to make understandable, the way of using the subVlIs
included in LabVIEW to CCS Link, according to the category they belong to.

3.1 CCS Setup

The subVIs of the CCS Setup category that were presented above, provide the user with
the capability to define in software, through a VI, the board or the DSP that the CCS will use.
In fact the subVIs of this category control the CCStudio Setup. Below, the way in which, the
user can define one or more DSPs using a VI, is going to be presented.

3.1.1 CCS Setup for one board

In order for the user to develop a VI that would set the CCS, so that the DSKC6713 is to
be used, has to think at first what are the exact steps that would be made using the CCStudio

Setup manually. These steps that the user would have done manually, to define the
DSKC6713 are:

e Open the CCStudio Setup

e Clear all previous settings

e Choose and add the desired board, in this case the DSKC6713, either by using the
“Available Boards” window, or by entering the board’s / simulator’s driver (file with .ccs
extension) choosing File = Import and providing the file’s name and path.

e Save the settings that were made.

e Close the CCStudio Setup.

All steps above can be implemented with LabVIEW, using the CCS setup category’s
subVIs included in LabVIEW to CCS Link. Therefore, in the blank VI of LabVIEW the user
can place these subVIs that correspond to the steps that would have been done manually. The
choice of the appropriate VIs is done following this steps:

e First step is to open the CCStudio Setup, which is done by the CCSetup Open.vi.

e Second step is to clear all previous settings of CCStudio Setup, which is done by the
CCSetup_Clear.vi.

e Third step is to choose and add a board, which is done by the CCSetup Add Board.vi.

e Fourth step is to save these setting, which is done by the CCSetup_Save.vi.

o Fifth step is to close the CCSetup Studio, which is done by the CCSetup_Close.vi.

LabVIEW to CCS Link 103

When the above subVls are placed in the blank VI, the user will have to connect them
and add the necessary controls, indicators and constants in order for the VI to work. It must be
noticed that the subVIs’ inputs that stay disconnected, take their defaults values. In Figure
102, the final block diagram of the VI that defines the DSKC6713 through CCStudio Setup is
presented.

Driver Path
T CCstudio w3, Ldriver shimportidske7 13, ccs

errar out

Figure 102. The block diagram of the VI that defines DSKC6713.

The Boolean constant with the value False that was connected to the “Visible” input of
the CCSetup_ Open.vi defines that CCStudio Setup will actually open but won’t be visible to
the user. The control “error in” that was connected to the corresponding input of
CCSetup_Open.vi is optional since the thing that matters is if this specific VI is used as
subVI. The constant “Driver Path” contains the full path of the DSKC6713 drives. If CCS is
installed to a different location than the default, then the content of the constant “Driver Path”,
which is connected to the corresponding input of CCSetup Add Board.vi, has to be changed
as well. Finally the indicator “error out” will inform the user if any error has occurred during
the VI’s execution.

¢ Code Composer Studio Setup
File Edit Wiew Help

System Configuration &vailable Fackary Boards Pamity | Platform | Enda... | (4] |SMy System &
= lan s -]
B 6201 Device Simulator Cozwx sl little CEV13 DaK
B C6713 Dok EECE202 Device Simulakor Cezwx simul.. little Mumber of
B CPU_L EE C6207 Device Simulatar C6Zwe simul.. little De“;':ES:
B C6z204 Device Simulator a2 simul... little
ER C6205 Device Simulator CoZwx simul,.. litte v
1 w
B Factory Boards |H Custom Boards] ﬁ Create Board I F 3
Save & Cuit | ‘ Rer | | |:|

Drag a device driver to the left to add & board ko the system,

Figure 103. The CCStudio Setup window after the execution of the VI defining the DSKC6713.

If the above VI is executed and after that the CCStudio Setup is opened, it will be
noticed that the CCS setup for using the DSKC6713 is done. The CCStudio Setup window
will look like Figure 103.

3.1.2 CCS Setup for multiple boards

CCS has the advantage of using more than one board or combination of different boards
and one simulator at the same time. However, it does not allow the use of more that one
simulators.

104 3. Using the LabVIEW to CCS Link

Following the pattern described in paragraph 3.1.1 a VI named
CCS_Setup for multiple boards.vi was created, the block diagram of which is presented in
Figure 104. This VI defines the simultaneous use of the DSKC6713 board, DSKC6711 board
and the C6713 Device Cycle Accurate Simulator. It also alters the name of the DSKC6711
board to my_ board and the name of the processor of the DSKC6713 board tomy CPU.

Driver path2

L CCSkudio w3, hdriversimporthc6713 sim.cos

Criver pathl

[%ChCCstudio w3, Ldriversiimpartidska? 1 1sppa7a.cos
Driver Path
[ChCCstudio w3, 1idriverstimportidske? 13, oos

error out

I ------- B ------- < _.:__ ------- e ------- _____

Mew Marme
hmv board

Figure 104. The block diagram of CCS_Setup for multiple boards.vi

The CCS_Setup for multiple boards.vi at first opens the CCStudio Setup which is
visible to the user since the default value of input “Visible” in CCSetup Open.vi is True.
Next, the CCSetup Clear.vi clears all previous CCStudio Setup settings while the
CCS _Setup Add Board.vi enters the board that corresponds to the driver indicated by the
constant “Driver Path”. The board is DSKC6713. The CCSetup_Rename Board.vi alters the
board’s name which was entered (meaning the DSKC6713) into the one containing in the
constant “New Name” which is “my_board”. The CCS_Setup Add Board.vi is used again in
order to enter the board, the driver’s path of which is indicated by the constant “Driver
Path1”. The constant “Driver Pathl” contains the DSKC6711 drivers’ path, that uses the
SPP378 address of the parallel port, so the board that is inserted now is the DSKC6711. The
CCSetup_Rename Processor.vi alters the name of the board’s CPU, which was entered
(meaning the DSKC6711) into the one included in the constant “ProcName” , that is
“my CPU”. The CCS_Setup Add Board.vi which is used once again enters the simulator,
the driver’s path of which was defined by the constant “Driver Path2”. The constant “Driver
Path2” contains the drivers’ path of the C6713 Device Cycle Accurate Simulator, so the
simulator for the TMS320C6713 DSP will be entered. The new settings will be saved after the
execution of the CCSetup Save.vi. Finally the CCS Setup for multiple boards.vi execution
is completed by closing the CCStudio Setup, which is done by the CCSetup Close.vi.

After the successful execution of the CCS_Setup for multiple boards.vi the settings are
saved and the CCS is ready to use the DSKC6713 with its new name, the DSKC6711 with the
new processor’s name and the C6713 Device Cycle Accurate Simulator. The CCStudio Setup
will look like Figure 105.

LabVIEW to CCS Link 105

g Code Composer Studio Setup
File Edit View Help

System Configuration #vailable Fackory Boards Famiy | Platform | Endia. . My SyStem -
[~lan = [far]
EH:C5201 Device Simulakar Ce2xx osimul., little CGET13 Device Cyele
=l B my_board EECE202 Device Simulator Cézxx simdl.. little Accurate Sirmulatar
o CPU_L ER:C5203 Device Simulabor Ce2xx simul.. little N“Tber of Devices:
- Mg 6711 DSk B C5:204 Device Simulator CeZoc simdl.. little
M my_CPU EECE205 Device Simdlator Ce2c sl little CET11 DK
= C;f;:;;;g;i': Accurste Simulstor |mmceooy xDSS10 Emulator CBZxx xdsS.. ¥ NIl & Deiees:
B C520x xDs5e0 Emulator CEgxx xdsS,,. 1
EE:CE211 DSK Port 278 EPP ... Ce2xx dsk *
EH:CE211 DSK Port 278 5PP .., Cezxx dsk * ry_board
E®:C6211 DSK Port 378 EFP ... C62x dsk * Murmber of Devices:
— - . | 1 v
E® Factory Boards |Ei Cuskom Boards I > Create Board J < 3

Save & Quit | Remove &l | | | I:l

Drag a device driver ko the left to add a board to the syskem,

Figure 105. The CCStudio Setup window after the execution of the CCS_Setup for multiple boards.vi

3.2 CCS Automation

The subVlIs of the CCS Automation category that were presented in previous section,
provide the user with the capability for software control, through a VI, of the Code Compose
Studio and consequently the DSP. Below, the way in which, the user can develop a VI that
will control one or more DSPs, is presented.

3.2.1 Automate CCS to control one DSP

In order for the user to develop a VI that would control a TI’s DSP through CCS, has to
think at first what are the exact steps that would be made using the CCStudio Setup manually.
These steps that the user would have done manually, to control a DSP (as long as the CCS
project has already been created) are:

Open CCS.

Open the desired CCS project.

Build the project.

Command CCS to connect with the DSP.

Command the DSP to reset.

Download the executable file (with .out extension) to DSP.
Enable the RTDX technology if the project is using it.
Command the DSP to start the execution of the program.

As long as the desire procedure is completed, the user has to command the DSP to
terminate the execution of the program.

While the RTDX technology is enabled, the user must disable it.
Command CCS to disconnect the board.

Close the CCS project.

Close the CCS.

106 3. Using the LabVIEW to CCS Link

All steps above can be implemented with LabVIEW, using the CCS Automation
category’s subVlIs included in LabVIEW to CCS Link. Therefore, in the blank VI of
LabVIEW the user can place these subVlIs that correspond to the steps that would have
been done manually. The choice of the appropriate VIs is done following this steps:

e The first step is to open CCS, which is done by the CCS_Open.vi.

e The second step is to open the desired CCS project, which is done by the
CCS_Open_Project.vi.

e The third step is to build this project, which is done by the CCS_Build_All.vi. If the user
wants to watch the results, during the building process, to the VI that it will be developed,
he has to use the CCS_Build Result.vi

e The fourth step is to connect CCS with the DSP, which is done by the CCS_ Connect.vi.

e The fifth step is to reset the DSP, which is done by the CCS_Reset.vi.

e The sixth step is to download the executable code to DSP, which is done by the
CCS_Download.vi.

e The seventh step is to enable the RTDX technology, which is done by the
CCS_RTDX Enable.vi.

e The eighth step is for the DSP to start the execution of the main program, which is done
by the CCS_Run.vi.

e The ninth step is for the DSP to stop the execution of the main program, which is done by
the CCS_Halt.vi.

e The tenth step is to disable the RTDX technology, which is done by the
CCS_Disable RTDX.vi.

e The eleventh step is to disconnect the board, which is done by the CCS_ Disconnect.vi.

e The twelfth step is to close the project, which is done by the CCS_Close Project.vi.

e The thirteenth step is to close CCS, which is done by the CCS_Close.vi.

When the above subVls are placed in the blank VI, the user will have to connect them
and add the necessary controls, indicators, constants and structures in order for the VI to
work. It must be noticed that the subVIs’ inputs that stay disconnected, take their defaults
values. In Figure 106 the block diagram of a typical VI, that controls the CCS and
consequently the DSP, is presented.

Project Path
WPlace here vous project's path {C:Yproject directory\project name. piti |

[TonoBetore 6 Tov kidied oog

uild Feesult

i I
T

Figure 106. The block diagram of a typical VI, that controls the CCS and consequently the DSP

In the block diagram of Figure 106 the constant “Project Path” which is connected to the
CCS_Open_Project.vi input “Project Path In” would have to contain the project’s full path
that is about to be opened in CCS. The indicator “Build Result” connects with to the
CCS_Build Result.vi output “Build Result” showing the results from the building process of

LabVIEW to CCS Link 107

the project. A While structure is between CCS_Run.vi and CCS_Halt.vi in which the main
code of the VI has to be written. The main code will have to implement the data process and
transfer from / to the DSP. The way in which the main code could exchange data with the
DSP is going to be presented in a following paragraph. As Figure 106 shows, the While
structure stops if any error occurs or if the control “Stop” takes the value True. However, as
long as the While structure is executed, the subVIs that are next can not be executed. This fact
ensures that the DSP will continue the execution of the main program till it is completed or till
the control “Stop” takes the value True.

It has to be noticed that in the block diagram the CCS Connect.vi and
CCS_Disconnect.vi must not be placed, if CCS is set to use any of the simulators, since the
dynamic connection and disconnection is for boards and not for simulators.

If CCS is set to use any board then the CCS_Connect.vi must be placed before the
subVIs that are related to the DSP, such as CCS Run.vi, CCS_ Reset.vi etc, since the
connection between the CCS and the board has to be completed. Additionally the CCS
Disconnect.vi must be placed before the subVlIs that cause the project and the CCS to close
and after the subVIs that are related to the DSP, since the CCS has to be disconnected from
the board.

In case of the CCS project does not use the RTDX technology the subVlIs that are
related to the RTDX technology, such as the CS_ RTDX Enable.vi, CCS_RTDX Disable.vi
etc, are useless. If the Non Continuous methods of the RTDX technology are used, then the
CCS_RTDX Logfile Configuration.vi could also be used, since the defaults settings of the
logfile are not affected by the user. The use of the CCS RTDX Logfile Configuration.vi is
meaningless if the Continuous method of the RTDX technology is chosen, since in that case
the logfile is not used at all. The choice of the RTDX method is carried out by the
CCS_RTDX Enable.vi.

3.2.2 Automate CCS to control more that one DSPs

CCS has the advantage to manage simultaneously more that one boards or a
combination between boards and one simulator, through Parallel Debug Manager (PDM). The
PDM is shown only if two boards (at least) or one board and one simulator are defined
through CCStudio Setup. In Figure 107 the PDM window is presented, when DSK C6713 and
C6711 are defined in CCStudio Setup.

% CCStudio: Parallel Debug Manager
File ©Open @Group Debug Options Help

F}|@|{@|§|E|%|Default Group -

1 System Hame Board Status Connection Type
] @ CE711 DSk CET11 DSk Ok, CE211 CET11 DSK,
@ CPU_1 CET13 Dsk Ok CE713 DSK (Spectrum Digital)
- @M 5713 DK
@ cpu_l

Figure 107. The Parallel Debug Manager window

For the simultaneous management of the CPUs that the boards contain, CCS has the
capability to open a Debug Window for each CPU. This feature provides the user with the
opportunity to program and mage each board separately.

108 3. Using the LabVIEW to CCS Link

The LabVIEW to CCS Link together with the CCS Automation category’s subVlIs
provide the user with the capability to control different Debug Window, therefore different
boards. The subVI CCS_Open_Project.vi defines which card and which processor is to be
used by the subVlIs that follows, according to the value of input “Boards & Processors”. The
input “Boards & Processors” is a cluster of inputs consisting of two: the “Board” input and the
“Processor” input that are accepting 8-bit, unsigned integers. Input “Board” declares the board
that is to be controlled and the input “Processor” declares the processor of the board that is to
be controlled. For the Debug Window of the DSK C6713 to open in the case that the PDM
looks like Figure 107, the input “Boards” will have to take the value 1 and the input
“Processor” the value 0. Therefore the output CCS_Out of the CCS_Open_Project.vi, would
contain information related to the DSK C6713 Debug Window, so all the subVIs that will be
connected directly or indirectly to this output will refer to the DSKC6713. In the same way,
the output “CCS_Event Notif Out” contain information related to events that occur in the
Debug Window of the DSK C6713.

The subVIs of the LabVIEW to CCS Link can be used many times in a single VI.
Therefore, a VI can use two or more that two times the CCS_Open_Project.vi in order to open
more that one Debug Windows. The user must be careful, before connects a subVI to an
output “CCS_Out” or “CCS_Event Notif Out”, to understand in what Debug Window and
consequently in what CPU the specific output is referring to.

In Figure 108 the block diagram of a VI that controls two boards at the same time is
presented. The boards that the VI will manage depend on the PDM. In case of the PDM
looking like Figure 107 then, the VI will control simultaneously the DSK C6711 (Board 0)
and the C6713 (Board 1). In the block diagram of Figure 108 the CCS_Open_Project.vi which
takes as input the constant “Project Path”, opens the Debug Window for the DSK C6711
(Board 0) and loads the project, the path of which is indicated by the constant “Project Path”.
The VIs that follow are depended on the same pattern that the automation and the control of
the CCS is being done, when only one board is used as described in paragraph 3.2.1.

The CCS_Open_Project.vi that takes as input the constant “Project Pathl”opens the
Debug Window of DSK C6713 (Board 1) and loads the project, the path of which is indicated
by the constant “Project Path1”, therefore the VIs that follow are referring to the DSK C6713.

Eoard & Proc
===
Eioard -
m Project path

F— Project path For board 0f C:iproject directoryiproject name.pit) | |Tgngag1-ﬁg-rg =i To KBk oog |

0

Em Board 0
Project pathl
Einard & Procl | =Project path for board 1 (Ciiproject directorytproject name . pit) s
Eoard
1
Frocessor Board 1
|

Figure 108. The block diagram of a VI that controls two DSPs through CCS

Following the pattern that described above Vis that control more that one board at the
same time, can be easily developed.

LabVIEW to CCS Link 109
3.3 CCS Communication

The subVls of the CCS Communication are developed for data exchange between a VI
and a DSP. These subVIs that manage the communication, support reading from and writing
to the DSP memory either by direct access or by using the RTDX technology. The subVIs that
are handling the communication with the CCS and consequently the DSP, are part of the VI’s
main code that automates the CCS as described in paragraph 3.2. This means that these
subVlIs are usually placed inside the While structure of Figures 106 and 108, so the
continuous communication between CCS and DSP is ensured.

The data transfer, by direct DSP memory access, has the advantage that does not require
the code modification in CCS project, while the main disadvantage of this method of data
transfer is that the DSP has to interrupt the execution of the program that is running, till the
data transfer is completed. The time of this interrupt depends on the data size.

TI, by developing the RTDX technology that has embodied to its DSPs, has managed to
achieve faster data transfers without interrupting the execution of the program on the DSP, for
great time periods, so the data transfer will be completed successfully. However, the
disadvantage of this method is that the C code in a CCS project (that did not support Real
Time Data eXchange) has to be modified. The H data transfer using the RTDX technology is
very useful in real-time applications.

3.3.1 Direct DSP memory access

Data transfer by direct DSP memory access, provides the user with the capability to read
and write data to any location in the DSP memory. This is very important for the control of an
existing application, since it does require code modification in CCS. The only demand is that
the variables of the project that contain the data to be transferred have to be global.

Reading from the DSP memory

In order for the value of a double type variable to be read, the MEM_Read.vi has to be
used and the MEM_Read F8 has to be chosen. Moreover, the page and the address in the
DSP memory, from where the read process will begin, have to be declared, in input “Page &
Address”. If the user does not know the memory location where the variable is saved, then he
has to use the MEM Get Address.vi and define in “Symbol Name” input the name of the
variable. The MEM_Get Address.vi will return the mage and address in the DSP memory,
where the variable is saved. Output “Data” of MEM_Read.vi will contain the value of the
variable that will be read.

In Figure 109(a) the While structure of Figure 106 is presented, as it should be modified
in order to read a double type variable (8-byte, double precision, floating point number), that
is saved in address 8000C1FD (hex) of page 0 in the DSP memory.

110 3. Using the LabVIEW to CCS Link

blizs blizs)

.,

Fi o 4440 Fii

Automatic

MEMRead_T1
MEMRead_I2
MEMRead_I4
MEMRead_LIT1
MEMRead_LITZ
MEMRead_LIT4
MEMRead_F4

Automatic

MEMRead_I1
MEMRead_I2
MEMRead_T4
MEMRead_LIT1

MEMRead_LII2
MEMRead_LIT4
MEMRead_F4

 MEMRead_F&
MEMRead_a_I1 MEMR.ead_a_l1
MEMRead_a_I2 MEMRead_a_I2
MEMRead_a_I4 MEMRead_a_I4
MEMRead_a_UIL MEMRead_a_UI1

MEMRead_a_LUIZ
MEMRead_a_LIT4
MEMRead_a_F4
MEMRead_a_Fa

MEMR.ead_Skring

(@)

MEMRead_a_LIIZ
MEMRead_a_lIT4
MEMRead_a_F4
MEMRead_A_F&

MEMRead_String

(b)

Figure 109. Reading a double type variable by direct DSP memory access
(a) knowing its page and address, (b) knowing only its name

In Figure 109(b) the While structure of Figure 106 is presented, as it should be modified
in order to read a double type variable (8-byte, double precision, floating point number),
according to its page and address in the DSP memory, located by the MEM_Get Address.vi
using the variable’s name.

With the procedure described above the reading of a variable of any type can be
accomplished. In order for an array or a string to be recognized from the DSP memory the
procedure presented above is followed with the difference that in input “Size” of
MEM_Read.vi the number of the array’s or string’s elements has to be declared.

Writing to the DSP memory

In order to write data in an integer (int) variable, the MEM_ Write.vi has to be used the
MEM_Write 14 has to be chosen. Moreover, the page and the address in the DSP memory,
from where the write process will begin, have to be declared, in input “Page & Address”. If
the user does not know the memory location where the variable is saved, then he has to use
the MEM_Get Address.vi and define in “Symbol Name” input the name of the variable. The
MEM Get Address.vi will return the mage and address in the DSP memory, where the
variable is saved. Output “Data” of MEM_Write.vi will contain the value of the variable that
will be written.

In Figure 110(a) the While structure of Figure 106 as it should be modified in order to
write data that the control “Data” contains, in an integer (4-byte signed integer) variable
which is saved in address 8000FFEOQ (hex) of page 0 in the DSP memory.

In Figure 110(b) the While structure of Figure 106 as it should be modified in order to
write data that the control “Data” contains, in an integer (4-byte signed integer) variable
according to its page and address in the DSP memory, located by the MEM Get Address.vi
using the variable’s name.

LabVIEW to CCS Link

i

NE
[

111

Fage & Address | Automatic TS |Symboal Name | b Tstatus |+
Page
oozl - Gogl
o - E’} IV
Address E. e D D (e
SO00FFED ; - T
rite:_ Al MEMuirite_LITL
Pata MEMWrite_LUIZ @ MEMurite_LITZ
55 MEMWrike 114 MEMYYrite _LIT4
) mgm%n:e_::; MEMYWrite _F4
rike: MEMWrite_FS
————| i balives
MEMWrite_A_T1 MEMYrite_A_T1
MEMrite_&_IZ MEMurite_& 12
MEMMWrike A T4 MEMWrite_A_T4
MEMMWrike A 1111 MEMYrite _A_LIT1
MEMWrike A _LIT2 MEMYrike A LIT2
MEMWrike _A_LIT4 MEMYYrite _a_LIT4
MEMWrike A _F4 MEMYrike A _F4
MEMWrike_A_FS MEMrite_A_F5
MEMWrike_Skring MEMYFike _String
(a) (b)

Figure 110. Writing an integer variable by direct DSP memory access
(a) knowing its page and address, (b) knowing only its name

With the procedure described above the writing of data in a variable of any type, in an
array or in a string which is saved to DSP memory, can be accomplished.

3.3.2 Using the RTDX technology

The RTDX technology supported by TI’s DSPs, achieves faster data transfer speeds
towards direct memory access. Moreover, the RTDX technology allows data transfer from
and to the DSP without interrupting the execution of the program on the DSP, for great time
periods. This is the reason why in real-time applications the use of RTDX technology is
necessary especially for data transfer of great size

The subVIs that belong to the CCS Communication category provides the user with the
capability to transfer data from and to the DSP using the RTDX technology as well as control
in software the RTDX channel. Below, the way in which data can be sent and received
through RTDX channels, despite the RTDX method (Continuous 1} Non Continuous) that is in
use.

Receiving data through the RTDX channel.

The RTDX channels that are declared in CCS are defined as input and output channels.
The input channels are transferring data to the DSP, while the output channels are transferring
data from the DSP. The data of an output RTDX channel will be recognized by LabVIEW
using the RTDX Read.vi. The RTDX Read.vi is a polymorphic VI which has the ability to
read numbers and arrays of all kind from the output channel that is indicated by the input
“Channel”. The RTDX channels are not two-way channels, so the channel that is indicated by
the input “Channel” has to be defined in CCS as output channel, otherwise an error will occur.

112 3. Using the LabVIEW to CCS Link

3

ISxmbol Marne | | Autarnatic ,_

MEMrite_T1 i @)

g MEMWrite_I2 -
« MEMWrite T4 Ll

MEMWrite_LIT1
MEMWrite_LII2
MEMWrite_LIT4
MEMWrite_F4
MEMWrite_Fa
MEMWribe_& _T1
MEMWrite_&_12
MEMWrite_&_T4
MEMWWrite_&_LITL
MEMWrite_A_LIZ
MEMWrite_&_LIT4
MEMWrite_&_F4
MEMWrite_&_F3
MEMW ke _Skring

Figure 111. Reading from the RTDX channel

In order for an array with float type (4-byte, single precision, floating point numbers)
elements to be read from an output channel named “Out_chan” the RTDX Read.vi has to be
used and the RTDX Read SA F4 has to be chosen. Input “Channel” will have to be
connected with constant or a control, that will contain the name of the output channel
(meaning Out_chan) transferring the array.

In Figure 111 the While structure of Figure 106 is presents, as it should be modified to
read data that the RTDX channel “Out_chan” contains.

Sending data through the RTDX channel

The input RTDX channels transfer data to DSP. Using the RTDX Write.vi the writing
of data from LabVIEW to a RTDX channel is possible. The RTDX Write.vi is a polymorphic
VI which has the ability to numbers and arrays of all kinds to the output channel indicated by
the input “Channel”. The RTDX channels are not two-way channels, so the channel that is
indicated by the input “Channel” has to be defined in CCS as output channel, otherwise an
error will occur.

In order for an array with unsigned short type (2-byte, unsigned integers) elements to be
written from an input channel named “In_chan” the RTDX Write.vi has to be used and the
RTDX Write SA UI2 has to be chosen. Input “Channel” will have to be connected with
constant or a control, that will contain the name of the input channel (meaning In_chan)
transferring the array.

In Figure 111 the While structure of Figure 106 is presents, as it should be modified to
read data that the control “Data” contains, to the RTDX channel “In_chan”.

LabVIEW to CCS Link 113

Automatic

RTDMrike_T1
RTDRWrite_I2
RTDRMribe_T4
RTDRWrite_LIT1
RTDRribe_UTZ H
RTDKWrike_UT4

RTDEuribe_Fd

RTDKWrite_Fa

RTDuribe_S6_I1
RTDKWrike_S4_2
RTDMribe_SA4_4
RTDHrike_56_UIT1
J RTDRWrite_54_L
RTDuribe_SA_LII4
RTDXWrike_58_F4
RTDRuribe_56_Fa

Figure 112.Writing to a RTDX channel

114 4. Applications

4. Applications

In order to understand the capabilities of the LabVIEW to CCS Link toolkit, two
complete projects will be presented. The first is a graphical three-band equalizer while the
second is an application on digital image processing. Both of the applications are
implemented using CCS and the DSKC6713. The control and the results of each application
are realized by the corresponding VI, which has been developed in LabVIEW using the
LabVIEW to CCS Link.

4.1 A Three-band Graphical Equalizer

In the following paragraphs, the theoretical guidelines about graphical equalizers will be
explained. Furthermore, the design and the implementation of a three-band graphical
equalizer using MATLAB and CCS will be presented compendiously. We emphasize to the
development of the corresponding VI that will control and show the results of this particular
equalizer.

4.1.1 Guidelines for graphical equalizers

The process of the equalization of a signal consists in amplifying and attenuating
specific frequency bands of the signal. This process is very useful in cases where some
frequency bands of the signal have been attenuated, related to others, and they must be
amplified (as in the long-distance transmission of an audio signal through a wire). Moreover,
equalizers are also used for the reverse process, which means that some frequency bands have
to be attenuated in order for other frequencies to rise. The equalizers are used in almost every
modern audio reproduction system, to give the desired sound’s hue.

Graphical equalizers achieve the division of the spectrum of a signal in different
frequency bands by using a group o f low-pass filters. An ideal low-pass filter must allow to
frequencies, around a center frequency, to pass, while cutting-off all other frequencies.
Unfortunately such an ideal filter is not possible to implement. In Figure 113, the respond of
the filters used in graphical equalizers is presented. The Q factor of every filter is defined as
the ratio of the center frequency wy to the bandwidth Ao=w,-w,,

1 -
|H{£2)| :

v

0y 0y, @y
0

Figure 113. Frequency Response of a low-pass filter

LabVIEW to CCS Link 115

and it is described by the equation:
@y @,
0 Ao o, -o,

The Q factor shows how heavy is the response of the filter.

Using N low-pass filters, the signal’s frequency spectrum is divided into N regions.
These filters are connected in parallel, as shown in Figure 114. The equalizer’s output is the
sum of all the filters’ outputs. The amplification or attenuation of each region is achieved by
multiplying the output of the corresponding filter with a gain factor G. In case where G is
greater than one the specific frequency region is amplified, otherwise (G<I) is attenuated.
The center frequency of each filter as well as the number of the filters depends on the
application of the equalizer and on the sampling frequency of the signal (in case of a digital
signal).

(1)

Filter 1

D/A

Filter 3

Filter N

Gain N

Figure 114. N-region digital equalizer

Usually, the main frequencies of two sequential filters are differed to an octave (one
filter has @, , while the others has 2 x wy). For audio signals (where equalizers are heavily
used) ten filters (ten frequency bands) then main frequencies of which start form 31 Hz and
reach 16 kHz, are used. In Figure 115 the responds of the ten low-pass filters of such an
equalizer is presented. These filters are second-order IIR filters. As shown in Figure 115,
there has been an overlapping in the filters’ responses, because the filters are no ideal. So,
when the output of a filter is amplified, not only the frequencies around the main one are
amplified, but also all the other frequencies. The difference is that these frequencies (apart
from the passband) have already been degraded from the filter, so in the final result only the
passband frequencies are amplified. Furthermore, because of the non-ideal filters, when all the
gain factors are 1 the final frequency response of the equalizer is not linear, as someone would
expect.

116 4. Applications

T 31 62 125 250 00 1oao 2000 000 2000 16000
E 0.8
o
g 06 —
g 04
F 07
0 —
| L] Lol] Lo
102 103 104
FREQUENCY (Hz)

Figure 115. Filter’s responses of a ten-band equalizer

The low-pass filters of an equalizer usually are IIR, because for their implementation
less coefficients are needed compared to the corresponding FIR filters. In addition, most of
the times these are second-order filters, which means that they consist of only one biquad
(Figure 116). As a result, only 5 multiplications and two sums are required for each filter. The
transfer function of such a biquad is:

-1 -2
_by+bz +b,z

H,(z) : ; @)

l-a,z" —a,z

The use of second-order IIR filters contributes to the reduction of time needed by the
processor, to produce the output.

X(n) —4 b0
A

P

IK-H y(n)

Bt T

P

Figure 116. A biquad

LabVIEW to CCS Link 117

4.1.2 Specifications

The three-band graphical equalizer that will be shortly implemented, consists of three
second-order IIR filters. The specifications of these three filters are presented in Table 12.

. Filter .. Sampling
Filter Type Order Designing Method Frequency Passband
Low-Pass Butterworth ond Bilinear . Fs =48 kHz <5.5kHz
Transformation
High-Pass Butterworth 2 Bilinear Fs = 48 kHz 5.5-11 kHz
Transformation
Band-Pass Butterworth nd Bilinear . Fs =48 kHz >11kHz
Transformation

Table 12. Specifications of the three-band graphical equalizer

The graphical equalizer will accept a hypothetical signal, a composition of three
sinusoidals with frequencies at 200Hz, 7kHz and 14kHz respectively, created with MATLAB.
This hypothetical signal will be used to control the equalizer through MATLAB and to
compare the results with these that will rise from the equalizer’s CCS implementation.

The control of the equalizer, implemented with CCS for the DSKC6713, will be done
through a VI, developed with LabVIEW using the LabVIEW to CCS Link. The
communication between the VI, the CCS and the DSKC6713 will be achieved by using the
RTDX technology.

4.1.3 Design and control of the graphical equalizer using MATLAB

The design of the equalizer using MATLAB, comprises the filters’ coefficients
computation according to the given specifications. tpwv. The control of the equalizer will be
done with a hypothetical signal created in MATLAB.

Filters’ coefficients computation.

For the IIR filters’ coefficients computation that the equalizer includes, has been
made by the following m-file.

clear all;
close all;

n=1; %Number of Biquads
fs =48000; %Sampling frequency

%Initialize coefficients’ Table
scoefs = zeros(3*n,6);

%Axes limits

nxmin = 10;

nxmax = fs/2;

nymin = -50; %log scale

118 4. Applications

nymax = 10; %log scale

%Computation and representation of the low-pass filter
[b,a]=butter(2*n,2*5500/fs);
scoefs(1:n,:) = tf2sos(b,a);
[h,w]=freqz(b,a,fs/2,fs);
figure
semilogx(20*log10(abs(h)))
axis([nxmin nxmax nymin nymax|)

% Computation and representation of the band-pass filter

[b,a]=butter(n,[2*5500/fs 2*11000/fs]);
scoefs(1:n,:) = tf2sos(b,a);
[h,w]=freqz(b,a,fs/2,fs);
hold on

semilogx(20*log10(abs(h)))

% Computation and representation of the high-pass filter

[b,a]=butter(2*n,2*11000/fs,'high");
scoefs((n+1):2*n,:) = tf2s0s(b,a);
[h,w]=freqz(b,a,fs/2,fs);
hold on
semilogx(20*log10(abs(h))); title('frequency response (dB)')

coefs(:,1) = -scoefs(:,5); % -al
coefs(:,2) = -scoefs(:,6); % -a2

coefs(:,3) = scoefs(:,1); % b0
coefs(:,4) = scoefs(:,2); % bl
coefs(:,5) = scoefs(:,3); % b2

%Save the filters’ coefficients to a .cof file
save equ_coefs(coefs,n);

Program 1. The m-file that calculates the IIR filters’ coefficients of the equalizer

In the above m-file the function save equ coefs() is called, which saves the filter;s
coefficients to a .cof file with a name decided by the user. Next , the save equ coefs()
function is presented.

function save equ_coefs(coefs,SOS);

[filename,pathname, filterindex |=uiputfile(*.cof','Save the equalizer cofficients');
if (filterindex ~=0)
fid=fopen([pathname,filename],'w");

fprintf(fid,'/* Equalizer coefficients in float format */\r\n');
fprintf(fid,"\r\n#define sections %d \r\n',SOS);

for i=1:1:size(coefs,1)/SOS
fprintf(fid,"\r\nfloat coefs%d[%d] = \r\n',i-1,5*SOS);

LabVIEW to CCS Link 119

fprintf(fid, {\r\n');

for j=1:1:S0OS
fprintf(fid,"\t%6d\t,\t%6d\t,\t%6d\t,\t%6d\t,\t%6d,\t\r\n',...
coefs((i-1)*SOS+j,1),coefs((i-1)*SOS+j,2),coefs((i-1)*SOS+j,3),...
coefs((i-1)*SOS+j,4),coefs((i-1)*SOSH,5));

end

fprintf(fid,'} ;\r\n");

end

fclose(fid);
end

Program 2. The save_equ_coefs() function

When the above m-file (Program 1) is executed, a window will appear asking for the
name of the file to be created that will contain the filters’ coefficients. If the name of this file
is equalizer.cof, it will look like Figure 117. The m-file will also design the filters’ response
of the equalizer (Figure 118).

B equalizer.cof - Znpewyarapio

Apwsio Emsfzpyadia Mopogh Mpofoar BorBza
= Equalizer coefficients in float format */

#define sections 1

'E'I oat coefsa[5] =

4 1.025543e+000 3 -3.6040444e-001 8.4625382-002 3 1.692508e-001 3 5.46253382-002
TE'I oat coefsl[5] =
' 7.31893%2-001 ¥ -4.530941e-001 , 2.7345258e-001 i o, -2.73452%e-001,
'E'Ioat coefsz[5] =
' 1.5346482-001 i -1.7573583e-001 3.323010e-001 i -6.6846020e-001 , 3.323010e-001,
Figure 117. The filters’ coefficient file of the equalizer, named equalizer.cof
frequency response (dB)
10 /,ﬂ.s
0
S0k
20k
G0k
-0t 7
50 s . s . s s
10 1 1 10t 4000 B000 8000 10000 12000 14000 16000

Figure 118. The filters; response of the equalizer

From Figure 118 it is concluded that the filters of the equalizer meet the desired
specifications.

120 4. Applications
Generation of a hypothetical signal

In order to control the function of the equalizer, a hypothetical signal will be used
consisting of three sinusoidal with frequencies 200Hz, 7kHz and 14kHz respectively. The
sampling frequency of this signal is 48kHz. The m-file that is shown below generates the
hypothetical signal, represents the signal, calculates and represents the 512-point FFT of the
signal. Finally, it saves the signals’ points to a header file (with .h extension), so as to be used
for the control of the equalizer through.

close all;
clear all;

f1=200; 2=7000; f3=14000; %Sinusoidals’ frequencies
fs = 48000; %Sampling frequency

%Generation of the hypothetical signal
t=0:1/fs:1;

x1 = sin(2*pi*t*fl);

x2 = sin(2*pi*t*f2);

x3 = sin(2*pi*t*{3);

xtot = (x1 + x2 +x3)/3;

xs = xtot(1:512);

xq = round(xs*(2"15-1));

%Representation of the signal
figure(1)

plot(xq)

axis([0 512 -inf inf])

%Calculation and representation of the FFT
y = abs(fft(xq));

figure(2)

plot(y)

axis([0 512 -inf inf])

%Saving the signal
save_signal(xq)

Program 3. The m-file that generates the hypothetical signal

The function save _signal() is used in order for the user decide, from the dialog window
that will appear, the name of the header file of the hypothetical signal. The function
save_signal() is shown below.

function save_signal(data);

[filename,pathname, filterindex |=uiputfile('*.h','Save the signal');
if (filterindex ~= 0)
fid=fopen([pathname,filename],'w");

LabVIEW to CCS Link 121

signal size = length(data);
fprintf(fid,"/* Signal data*/\r\n");

fprintf(fid,"\r\nshort signal[%d] = \r\n',signal size);
fprintf(fid,' {\r\n");
for i=1:(signal_size)

fprintf(fid,"\t%6d,\r\n', data(i));
end

fprintf(fid,'} ;\r\n');

fclose(fid);

end

Program 4. The function save_signal()

When the above m-file is executed (Program 3), a dialog window will appear asking for
the file’s name to be created and will contain the 512 points of the hypothetical signal. If the
name is decided to be signal 200 7k 14k.h. the file will look like Figure 119.

B signal 200 7k_14k.h - Snpzwyp... [=][B)X]
Apyweio Enefzpyodia Mopippr MpoPoir BonBaa
¥ signal data/ -

?hort signal[512] =

0,
19501,
5661,
-2687,
3140,
-6576,
-16937,
6243,
21189,
4917,
193,
7003,
-7547,
-13553,
12202,
21994,
4443,
3301,

Figure 119. The file signal 200 7k 14k.h that contains the 512 points of the hypothetical signal

The hypothetical signal that will be crated by the m-file is presented in Figure 120. The 512-
point FFT of the hypothetical signal is presented in Figure 121. It is concluded that the
generated signal actually contains three the three sinusoidals (200Hz, 7kHz and 14kHz)

a
> 1O

o 100 Zo0 ET=l] A00 soo

Figure 120. The hypothetical signal

122 4. Applications

05

D W

0 100 200 300 400 500

Figure 121. The 512-point FFT of the hypothetical signal

MATLAB results of the equalizer

The m-file shown below calculates and represents the output of each filter of the
equalizer when the input is the signal of Figure 120.

close all;
clear all;

f1=200; 2=7000; f3=14000; %Sinusoidals frequencies
fs=48000; %Sampling frequency

%Generation of hypothetical signal
t=0:1/fs:10;

x1 = sin(2*pi*t*fl);

x2 = sin(2*pi*t*f2);

x3 = sin(2*pi*t*f3);

xtot = round(((x1 + x2 +x3)/3)*(2*15-1));
xs = xtot(1:(10*fs));

xs1= xtot(1:512);

%Low-pass filtering
[b,a]=butter(2,2*5500/1s);
y1=filter(b,a,xs1);

figure;

plot(y1);

%Band-pass filtering
[b,a]=butter(1,[2*5500/fs 2*11000/fs]);
y2=filter(b,a,xs1);

figure;

plot(y2);

%High-pass filtering
[b,a]=butter(2,2*11000/fs,'high");
y3=filter(b,a,xs1);

figure;

plot(y3);

Program 5. The m-file that calculates the filters” output

LabVIEW to CCS Link 123

The filters’ outputs of the equalizer that are presented in Figures 122, 123 and 124
corresponds to the equalizer’s output when the amplification in each filter’s frequency band is
1, while the amplification to all others bands is 0

2 107

1.5 -
1

o.s [

[=] s0 100 150 200 =250 =00 =50 A00 as0 [={=Ta]

Figure 122. The output of the low-pass filter

100

[=] =0 R=1=] 150 =00 =50 =00 =s0 ETal=] aso so0

Figure 123. The output of the band-pass filter

[=] =0 100 150 200 250 S00 S50 400 450 s00

Figure 124. The output of the high-pass filter

4.1.4 Implementation of the graphical equalizer in CCS

The graphical equalizer that is going to be implemented in CCS for DSKC6713 will
have as an input the hypothetical signal, created in paragraph 4.1.3. The hypothetical signal is
being used in order to compare the results of the equalizer with those raised from MATLAB
to confirm its accurate function. Furthermore, by using this hypothetical signal, the function
of the equalizer is becoming more understandable to the user - student.

The C code of the sim_equ3_rtdx.c, implementing the three-band graphical equalizer, is
shown below.

124 4. Applications
// Includes
#include <rtdx.h> // Defines RTDX target API calls
#include "target.h" // Defines TARGET INITIALIZE()
#include "equalizer.cof™ // Filters coefficients
#include "signal 200 7k 14k.h" // Input signal
// Defines
#define sgain 32768 // Compensates for the out sample shifting
#define S 512 // Length of input signal
// Global variables
float f0_dly[2*sections] = {0.0}; // 1st filter delay line
float f1_dly[2*sections] = {0.0}; // 2nd filter delay line
float f2_dly[2*sections] = {0.0}; // 3rd filter delay line

short gains[3] = {0, 0, 0};
int fsignal[S];

// Functions

float iir_cas5(float input, float *c, float *d, int n)
{

float kO;

float temp;

nt 1;

temp = input;
for (i=0; i<n; i++)

{
kO = temp + c[S*i+1]*(d[2*i+1]) + c[S*i+0]*(d[2*i+0]);
temp = c[5*i+4]*(d[2*i+1]) + c[5*1+3]*(d[2*1+0]) + (c[5*i+2]*k0);
d[2*i+1] = d[2*i1+0];
d[2*i+0] = kO;
}
return temp*sgain;

}

//Defines RTDX channels

RTDX CreateOutputChannel(signal chan);
RTDX CreateOutputChannel(fsignal chan);
RTDX CreatelnputChannel(gains chan);

// Main
void main()

{

float input_sample;

LabVIEW to CCS Link 125

int j;
int data_out[3];
int data_sum;

TARGET INITIALIZE();

RTDX_enablelnput(&gains_chan);
RTDX enableOutput(&fsignal chan);
RTDX enableOutput(&signal chan);

fsignal[0]=0;

while(1)
{

RTDX read(&gains_chan, gains, sizeof(gains));

for (j=1; j<S; j++)
{
input_sample = (float)(signal[j]/10);

data out[0] = (int)(gains[0]*iir cas5(input_sample, coefs0, f0 dly, sections));
data_out[1] = (int)(gains[1]*iir_casS(input_sample, coefs1, f1_dly, sections));
data_out[2] = (int)(gains[2]*iir_cas5(input_sample, coefs2, f2 dly, sections));

data sum = data out[0] + data_out[1] + data out[2];
fsignal[j] =(int)(((data_sum)>>15));
H

RTDX_ write(&signal chan, signal, sizeof(signal));
RTDX write(&fsignal chan, fsignal, sizeof(fsignal));

Program 5. The C code of the sim_equ3_rtdx.c

In Program 5, firstly the files rtdx.h , target.h, equalizer.cof and signal 200 7k 14k.h
are included. The file r#dx.h includes the declarations of the functions related to the RTDX
technology. The file target.h includes the declaration of function TARGET INITIALIZE(),
which initializes the DSP and activates the interrupts so for the RTDX technology to be
enabled. The file equalizer.cof contains the filters’ coefficients of the equalizer as they were
calculated in MATLAB. The file signal 200 7k 14k.h created in MATLAB and contains
complex signal that will be used as an input to the equalizer.

Before the declaration of the main() function , the RTDX channels that will transfer
information from and to the DSP, are defined. The channel “gains chan” transfer a three-
number array to the DSP stating the amplification of each frequency. The channels
“fsignal chan” and “signal chan” transfer to the VI, controlled by the DSP, the input and
output signal of the equalizer.

In main() function, the DSP is initialized, the RTDX technology and the RTDX channels
are enabled. Inside the while structure, after the content of the channel “gains chan” is read,
the filters’ output of the equalizer is calculated, for every input signal, by calling iir cas5()
function. The filters; outputs after they are amplified properly, they are summed in order to

126 4. Applications

calculate the corresponding sample of the output signal of the equalizer. All 512 samples of
the output signal are calculated, and all 512 samples of the input and output signal are written
to the respective RTDX channels.

The project that will be created in CCS, for the implementation of the equalizer, apart
from the file sim equ3 rtdx.c that was described above, must also include the files
intvecs.asm, rtdx_buf.c and rtdx.cmd. In file rtdx_buf.c the size of the buffer, that the DSP is
going to use to transfer data using the RTDX technology, is defined. In this particular case the
size of this buffer should be greater than 512*4 + 8 =2056 bytes. The files intvecs.asm,
rtdx_buf.c and rtdx.cmd are developed by TI and they are included in CCS. In the project the
libraries rtdx.lib (or rtdxsim.lib if a simulator is being used) and rts6701./ib) must also be
added. In Figure 125 the View Window of the project in CCS is presented.

@ Files
+- (] GEL files
= a Projecks
= ﬁ sin_equ3_rtd=.pjt {Debug)
[Z2 Dependent Projects
[:I Documents
(£ D5PYBIOS Config
(2] Generated Files
-9 Include
chh
equalizer, cof
v b
RTDH _access.h
rbdxpoll b
signal_z00_7k_14k.h
target.h
-4 Libratias
rhte, ib
rs6 701, ib
= a Source
inkvecs. asm
rbdx_buf.c
sim_equd_rtdx.c
rkdx.crnd

Figure 125. The View Window of the equalizer project in CCS

LabVIEW to CCS Link 127

4.1.5 Implementation of a VI to control the graphical equalizer

In order to control the graphical equalizer, a VI named Equalizer.vi has been developed.
This VI sets, controls and communicates with the CCS automatically, so it orivdes the user
with the capability to alter the amplification of each frequency band without interruptin the
function of the equalizer. The user,also can watch the input and output signals of the equalizer
at any time.

The front panel of the Equalizer.vi

In Figure 126 the front panel of the Equalizer.vi that controls the equalizer is presented.

I Equalizer.vi

Input_signal Input N
Low_pass Band_pass High_pass A0
3= 3= 3= o 20000-
: : : E
23 2 2= =1 04
: : : E
12 12 12 < 20000
D—: D—: U—: -40000 -7 | | | | | | | | [
z z z n] S0 100 150 200 250 300 350 400 450 512
P P e Samiples
: Output_signal output [
-2- -2- 2= 1-
F= e 3z @
E
ﬂu o o g o-
-} O -} =
stop -1 [| | | | | | | | [
STOP] S0 100 150 200 250 300 350 400 450 512

Samples

output

Build Result

Output & Input signals Input

| 40000 -

20000 -
D -

Arnplituce

-20000 -

-40000 -] [| |] | | | | | [
a 50 100 150 =200 250 300 350 400 450 2512
Samples

Figure 126. The front panel of Equalizer.vi that controls the graphical equalizer

At the front panel there are three sliders named “Low pass”, “Band pass” and
“High pass” determining the amplification of the respective frequency band. Below these
sliders an array has been placed with three elements named “gains”. Each element
corresponds to a slider’s value. Below of the sliders a radio button has also been placed that
nulls the value of the respective slider and deactivates it. The Radio Buttons’ names are
“Low_pass_mute”, “Band pass mute” and “High pass _mute”. The “Stop” button terminates
the function of the VI, when pushed. The indicator “Build Result” shows the results of the
build process of the project in CCS. The indicator “Input_signal” depicts the equalizer’s input
signal; similarly the indicator “Output signal” depicts the equalizer’s output signal. The
indicator “Output & Input signals” depicts the input (green color) and output (red color) signal
simultaneously.

128 4. Applications
The block diagram of the Equalizer.vi

The block diagram of the Equalizer.vi, shown in Figure 127, has been separated into
four phases, in order for its function to become more understandable.

| Mﬁ. [ReTo_winte_sa_£2 -]
| e T iwl || Emmaem | | (] s
| T — 1l]
TR EES AADAREE dE23a
= s [etai]
| IEI o
Phase 1 Phase 2 Phase 4

Figure 127. The block diagram of the Equalizer.vi

In the first phase of the block diagram, shown in Figure 128, the CCS is being set up so
the DSKC6713 is to be used.

path

[LChCostudio w3, 1idriversiimportidska7 13, cos

igible| 005 Setup_Openwvil [Cos Setup Clear.vi|' CC5 Setup_Add Board.vi] [CC5 Setup_Save.wi| [0S Setup_Close, vi
=

Figure 128. The first phase of the block diagram of Equalizer.vi

The subVI CCS_ Setup Open.vi loads the CCStudio Setup without being visible by the
user, because in the input Visible of the subVI a Boolean constant has been connected with
value False. The CS Setup Clear.vi clears all previous settings from the CCStudio Setup.
The CCS_Setup Add Board.vi loads the DSKC6713 drivers to the CCStudio Setup
according to the path indicated by the constant “Path”, since it is connected with the input
“Driver Path” of the subVI. The CCS_Setup Save.vi saves the settings made and the CCS__
Setup Close.vi closes the CCStudio Setup.vi. In this point the first phase of the Equalizer.vi
has been completed. Therefore, the CCS is now set to use the DSKC6713.

In the second phase of the block diagram, shown in Figure 129, the actions that have to
be made, in order for the DSKC6713 to start the execution of the program (the equalizer), are
automated.

LabVIEW to CCS Link 129

Fiuild Reesult

Current YI's Path

b
L

p
sim_equ3_rkdx.pit

if il
TS _Open.vi] [CCS_Open_Project.vi] [CCS_Connect.vi] [CCS_DSP_Reset,vi] [CC5_Build_all.vi] [CCS Build_Result.vi] [CC5_Download.vi] [CC5_RTD%_Enable.vi] [CCS5 DSP_Run.vi]
= - 2
Croven b H AT
DEp
RTDH Settings

Buffer Size

2056

Murn OF Buffers

4

Mode

LNON COMTINUOUS |

Figure 129. The second phase of the block diagram of Equalizer.vi

The Equalizer.vi should be saved in the same folder that the CCS project has also been
saved, so for the path of the project to be correct. The Current VI’s Path.vi outputs the path of
the Equalizer.vi that is given as input to the Strip Path.vi. The output “stripped path” of the
Strip Path.vi contains the path that was given as input without the past part of it. For example,
if the path of the Equalizer.vi was C:\dsp applications\DSKC6713\sim_equ3_rtdx\
Equalizer.vi then the output “striped path” of the Strip Path.vi would contain the path
C:\dsp_applications\DSKC6713\ sim_equ3 rtdx. The output “striped path” of the Strip
Path.vi is connected with the input “Base Path” of Build Path .vi. In input “name or relative
path” of the Build path .vi the string constant “project name” is connected, that includes the
name of the CCS project, which is sim_equ3_rtdx.pjt. The Build Path.vi outputs in “appended
path” a new path that consists of the input “Base Path” and the content of input “name or
relative path”. If the content of input “Base Path” is C:\dsp applications\DSKC6713\
sim equ3 rtdx The content of the output “appended path” would be
C:\dsp_applications\DSKC6713\ sim_equ3 rtdx\ sim equ3 rtdx.pjt. The output “appended
path” of Build Path.vi is converted to string using the Path to String.vi. The output of the Path
to String.vi is connected to input “Project Path IN” of the CCS_Open_Project.vi. In this way
the CCS_Open_Project.vi takes the input of the CCS project as long as the Equalizer.vi has
been saved in the same folder as the CCS project. This pattern is followed to VIs that use file
paths in order to be transferred to different work stations without any extra modifications.

The CCS_Open.vi loads the CCS and the CCS_Open_Project.vi loads the CCS project
according to the path included in input “Project Path In”. The CCS_Connect.vi connects the
CCS with the board, which is the DSKC6713. The CCS_DSP_Reset.vi resets the board. The
CCS_Build.vi orders the CCS to build the project that was loaded, so for the executable file
will be generated. The build process is completed, the CCS Build Result.vi outputs the
building result to the indicator “Build Result”. While no errors have occurred during the
building process, the CCS_Download.vi orders the CCS to download the executable code to
the DSP. Because the project uses the RTDX technology the CCS_RTDX Enable.vi is used,
that enables and controls the RTDX parameters. The constants cluster “RTDX Settings” that
is connected to the respective input of the CCS_ RTDX Enable.vi contains the settings related
to the RTDX technology. The constant “Buffer Size” defines the size of the host buffer that is
going to be used and it will be 2056 bytes, the constant “Num Of Buffers” defines the
number of the host buffers, that will be 4 and the constant “Mode” defines the RTDX method
that will be used, which is the Non Continuous one. Finally the second phase of the block
diagram is completed with the CCS_Run.vi, which through CCS, commands the DSP initiate
the execution of the program.

The third phase of the block diagram of Equalizer.vi, shown in Figure 130, comprises
the main code of the VI. The third phase is the content of the While structure, that allows

130 4. Applications

constant communication of the VI with the DSP, until some error occurs or until the user
pushes the “Stop” button.

while Loop

Flat Sequence Structure
0 T I s s A s

[channelt

- - Joutput_signal
Fsignal_chan . -
= B]

Channel ;E
gains_chan -...

13

................................. RD iR X d.w To Long Inkeger
: | 1132} nput_signal
_________ - | :
RTDw_Write_SA4_I2 RTD: Read S8 12 = OE
Ilb

I:IDI:IDI:IDDDDDEDDDDDDDDDDDDDDDDDDDD“DDDDDDDDDDDDDDDEDDDDDDDDD

Euild Arra
o ase Struckurel]
= e [
2 Unbundle By Mame
= T . N | B e -] O
Fand_pass Eta """
10- H
f'! I+ |STOP
TF
Hahoessl | o s
w_. Fand pass_mute
=g b @
Lrrd
[i]a==
Case Structured) :
High_pass_muke atiply] To Word Inteqer
x 1T 16—
O N
m Lrrd

10

Figure 130. The third phase of the block diagram of Equalizer.vi

The sliders’ terminals “Low_pass”, “Band_pass” and “High pass” are connected to the
Build Array.vi that creates an array (sliders’ array) with three elements. The first array
element contains the value of slider “Low pass”, the second contains the value of slider
“Band pass” and th ethord one contains the value of slider “High pass”.

The Radio Buttons “Low_pass mute”, “Band pass mute” and “High pass mute” whe
the have a True value (meaning they are selected in the front panel by the user) should coause
the respective slider’s value in the sliders array to null and to disable the slider. When the
Radio Buttons have a False value (are not selected) should cause no change to the respective
slider’s value ev while they should enable the slider if it is disabled. The function of the
Radio Buttons is identical, so only the Radio Button “Low pass mute” will be analysed.

The “Low pass mute” is connected to the control input of the corresponding Case
structure, shown in Figure 131. When the value of “Low pass mute” is True, the True case
of the Case structure will be executed, in which the first element of the sliders array, that
corresponds to slider “Low_pass”, will take the value 0 and the slider’s attribute “Disabled”
will take the value 2. The elements’ value in the sliders arry changes with the use of the
Replace Array Subset.vi. When the value of “Low pass mute” is False (not selected) the
False case of the Case structure will be executed, in which the sliders array is not affected and

LabVIEW to CCS Link 131

the attribute “Disabled” of slider “Low_pass” will take the value 0. The sliders’ attribute
“Disabled” defined if the respective slider will be enabled or disabled. If the attribute
“Disabled” takes the value 0 the respective slider will be enabled, while if it takes the value 2
it will be disabled and turn into gray. This is the way that all other Radio Buttons work.

A n : e

[Replace array Subset

ol_pass_muke
44
5
u]

ow_pass_muke| B

C)) (b)

Figure 131. The Case structure controlled by the Low_pass_mute (a) True case (b) False case

The indicator “gains” represents the sliders’ array, by taking into consideration the
values of the Radio Buttons. The sliders’ array after it is multiplied by the constant 10 using
the Multiply.vi it is converted to an array the elements of which are 2-byte (16 bits) signed
integers using the Word Integer.vi. The To Word Integer.vi output contains now the data to be
transferred to the DSP and they represent the amplification of each frequency band of the
equalizer.

The data transfer from the VI to the DSP and vice versa is achieved in Flat Sequence
structure. In the first Frame of the structure, the RTDX Write.vi has been placed, in which
the RTDX Write SA 12 choice is selected allowing arrays consisting of 2-byte (16 bits)
signed integers to be send. In input “Data” of the RTDX Write.vi the output of To Word
Integer.vi is connected that contains the data to be send. The string constant “Channel” that is
connected to the RTDX Write.vi indicates that for the data transfer the RTDX channel
“gains_chan” is used.

In the second Frame of the Flat Sequence structure a delay of 1500 msec is occurred
during the function of the Equalizer.vi. While in this time period, the DSP should receive the
data, process them and send the process results to the VI through the respective RTDX
channels. The data transfer speed from and to the DSP (which is the most time consumed
process) depends on the capabilities of the specific work station, so the above time period
could be easily reduced. The function delay of the VI is achieved using the Wait(ms).vi. The
arithmetic constant connected to input “milliseconds to wait” defines the time-delay of the VI.

In the third Frame of the Flat Sequence structure, data sent by the DSP are received and
represented. The RTDX Read.vi in which the RTDX Read SA 12 choice is selected reads
data by the RTDX channel indicated by the string constant “Channel”, which are the data in
RTDX channel “signal chan”. The RTDX channel “signal chan” contains a 512-element
array (2-byte signed integers) that represents the input signal. The output “Data” of the
RTDX Read.vi is connected to the indicator “Input_signal” that represents input signal. The
output “Data” is connected to the input of “To Long Integer” in order for the elements of the
array to be converted to 4-byte signed integers. The RTDX Read.vi is called again to but
now the RTDX Read SA I4 choice is selected, to read the data in the RTDX channel
indicated by the constant “Channell” , which are the data in the RTDX channel “fsignal”. The
RTDX channel “fsignal” transfers a 512-element array (4-byte signed integers) representing
the output signal of the equalizer. The output “Data” of the RTDX Read.vi is connected to
the indicator “Output signal” to represent the output signal. The output “Data” of the

132 4. Applications

RTDX Read.vi and the output of the To Long Integer.vi are connected to inputs of Build
Array.vi. The Build Array.vi creates a two-dimension array and its output is connected to the
indicator “Output & Input signals” in order to represent the input and output signal of the
equalizer, simultaneously.

After the third Frame of the structure Flat Sequence is completed a check is being made
to see if any error occurred or if the “Stop” button was pushed in order to terminate the
process of the While structure (third phase of the block diagram of the Equalizer.vi). This is
the reason why the “Status” outputs of the output cluster “error out” that is returned from the
Flat Sequence structure and the terminal icon of the “Stop” button are connected to the inputs
of the Or.vi. The Or.vi works just like an OR gate, therefore the output of the Or.vi takes the
True value if any error occurs or if the “Stop” button is pushed. The output of the Or.vi is
connected with the conditional terminal of the While structure, so if the output of the Or.vi is
True the While structure is not going to be executed again otherwise the process that was just
described will be repeated. In this point, not only the third phase of the Equalizer.vi is
completed but the maid code of the VI as well.

In the fourth phase of the Equalizer.vi, shown in Figure 132, the termination of the
project and the CCS is being done.

S DSP Halewi] [CCS RTDY Disable.wi] [CCS Disconnect,vi :CCS Close Project.vi] [CC5 Close.vi

Figure 132. The fourth phase of the block diagram of the Equalizer.vi

The CCS_DSP Halt.vi commands the DSP, through CCS, to stop the execution of the
program, while the CCS RTDX Disable.vi disables the RTDX technology. The
CCS_Close Project.vi closes the CCS project and the CCS_Close.vi closes the CCS. In this
point the fourth and final phase of the Equalizer.vi is completed.

LabVIEW to CCS Link 133

4.1.6 Results — Conclusions

In order to control the function of the graphical equalizer, a comparison is going to be
made, between the output, for different sliders’ values, as represented in Equalizer.vi and the
output of the respective filters in MATLAB.

In Figure 133 the front panel of the Equalizer.vi is presented, when it functions and the
amplification of the low frequencies is selected to be 1, while the amplification of the middle-
range and high frequencies is 0.

{3 Equalizer

Input_signal
Low_pass Band_pass High_pass il
SE J* z 20000 -
2 - - =
2—'I 2< 2= :E 0+
2 = < 20000
1= 1 1=
0 5 " e e e
0 50 100 150 200 230 300 350 400 430 512
12 1 S Samples
z = Qutput_signal 7Output !J
2 2 20000 -
&z 3 3= 3 10000 -
i I Io £ o
) @) @ E -10000 |
stop -20000 -
0 SO0 100 150 200 250 s00 50 400 450 siz
Samples |
; Qutput -7
Build Result Output & Input signals ot [
|0 Errars, O Warnings, 0 Remarks 40000 —— =&
g oo TN it
EN A
£ '\mw\ﬂn\mm,\I*Ll-l,uJier‘lm'.n'.\r\rlnl,\nw,'-,,\w\.llm,u}Hgllr‘l\'ﬂ.‘.n'.
< onano- mmm]l ! f “mmll ’
-40000 -7 i] i i i i i] i i
0 50 100 150 200 250 300 350 400 450 512
Samples

Figure 133. The front panel of the Equalizer.vi

In Figure 134 the input signal of the equalizer is shown as represented by the
Equalizer.vi and in MATLAB. From Figure 134 is concluded that the input signal is exactly
the same in both cases.

Py

100 200 300 400 500
(@) (b)
Figure 134. The input signal of the equalizer (a) in Equalizer.vi (b) in MATLAB
When the amplification of the low-frequencies is selected to be 1, while the

amplification of the middle-range and high frequencies is 0, the output signal of the equalizer
is the output of a low-pass filter as the Figure 135 shows.

134 4. Applications

10000 - 1
0- a

-10000 - 10000 +

17300 -] 1 | | I | | | I | 1 1 1 L L L
] 50 100 150 Zoo 250 300 350 400 450 512 0 100 200 300 400 00

(a) (b)

Figure 135. (a) The output signal of the equalizer in Equalizer.vi
(b) The output of the low-pass filter in MATLAB

In Figure 136 the front panel of the Equalizer.vi is presented when it functions and the
amplification of the middle-range frequencies is selected to be 1, while the amplification of
the low and high frequencies is 0.

E! Equalizer

Input_signal
Low pass Band_pass High_pass #0000+ k k
3= 3- 3- 20000~
B R
: j;| : | il Ay il o g
D’; D’; D’; xmnnn-a sb 100 150 200 st'ol 00 30 400 450 Siz
l_ l_ : Output_signal e Qutput !_
22 2 2 20000-
= o 5 15000~
S 10000-
o i1 o £ 500
@ o = & —Snng:
TS 10 1 2o EEEEEE:
ampes Output - 1
FalslREl Qutput & Input signals lwnut_g_

20 Errors, 0 ¥Warnings, 0 Remarks 40000 -

20002 \'ﬁ \h]Hw‘f i I\”H’W"“”‘W Iulwli ‘l

Amplituce

o "”"man'*n|1r1'

40000 -1 !
0 SD 100 150 200 250 300 350 400 450 512
Samples

Figure 136. The front panel of the Equalizer.vi

When the amplification of the middle-range frequencies is selected to be 1, while the
amplification of the low and high frequencies is 0, the output signal of the equalizer is the
output of a band-pass filter as Figure 137 shows.

17300 -
10000 - 10000 -
0- ol
-10000 - 10000 b d
-17300 - i | i i | i i | i i L L L L L
0 o0 100 1530 200 250 200 350 400 430 Sla2 0 100 200 300 400 500

() (b)

Figure 137. (a) The output signal of the equalizer in Equalizer.vi
(b) The output of the band-pass filter in MATLAB

LabVIEW to CCS Link 135

In Figure 138 the front panel of the Equalizer.vi is presented when it functions and the
amplification of the high frequencies is selected to be 1, while the amplification of the middle-
range and low frequencies is 0.

& Equalizer
Input_signal ity 1 b
Low_pass Band pass High_pass ity
B 1
;_ : :_ OutWtSignau 50 100 150 200 S;Sﬂgles:-mu 350 4E ; :
T — i
& = * ~ _1oona-
==1 R T EEEEEE:
}E“”d S - Output & Input signals Icr):;tthUt =
kw umm. m ..‘mw Wi il
S e
TR

Figure 138. The front panel of Equalizer.vi

When the amplification of the high frequencies is selected to be 1, while the
amplification of the middle-range and low frequencies is 0, the output signal of the equalizer
is the output of a high-pass filter as the Figure 139 shows.

17500

10000 - 10000

- I}
-10000- 10000
-17300 i | 1 | 1 1 | 1 | 1 [L L I L L
u] S50 100 150 200 250 300 350 400 450 512 0 100 200 =200 A00 s00
(@) (b)

Figure 139. (a) The output signal of the equalizer in Equalizer.vi
(b) The output of the high-pass filter in MATLAB

From the above Figures it can be easily concluded that the graphical equalizer described
above functions properly since results of the Equalizer.vi and MATLARB are in perfect match.

In order to design a tenth -or more- band graphical equalizer in MATLAB, firstly the m-
file that calculates the filter’s coefficients of the equalizer, must be altered to meet the new
specifications. For the creation of the file that will contain the filters’ coefficients
save_equ_coefs() function will be used without any modification.

In order to design a tenth -or more- band graphical equalizer in CCS, the delays (f0_dly,
f1 dly, f2_dly etc.) for each filter must be defined in the C code of the project, described in
paragraph 4.1.4. Furthermore the gains and data out arrays must have as many elements as
the bands of the equalizer (for a tenth-band equalizer they should have ten elements). The
function that implements the IIR filters is the iir cas5() and no modification is needed, while
it must be called inside the main function as many times as the equalizer’s bands. The

136 4. Applications

computation of each output sample of the equalizer is made by the sum of all filters’ results
(the results of the iir_cas5() function).

In order to control the tenth -or more- band graphical equalizer in LabVIEW, the
Equalizer.vi, described in paragraph 4.1.5, should be properly modified. In the front panel of
the Equalizer.vi the number of the sliders, the Radio Buttons and the “gains” array’s elements
must be equal to the equalizer’s bands. In the block diagram, the pattern presented for the
“Low_pass” slider, and the Radio Button “Low pass mute”, should be repeated for each
slider and Radio Button.

With the modifications described above, the three-band graphical equalizer can be easily
be converted in a tenth -or more- band graphical equalizer.

4.2 A Digital Image Processing Application

The digital image processing application that will be described below deals with
implementation of simple image processing algorithms on DSKC6713 controlled by a GUI
that is created in LabVIEW. In this application, the histogram equalization on a color image
can be easily accomplished, while edge detection or direct and inverse Discrete Cosine
Transform — DCT will be applied on a grayscale image. Furthermore, an image will be
encoded and decoded according to the JPEG standard. It must be noticed that the image as
well as its type and the processing algorithm are selected through the GUI.

Form each processing algorithm a CCS project has been created, therefore the project
and the respective code that will be loaded to CCS and executed by the DSP is selected
through the GUI. The image is loaded to the DSP during the building process through one or
three header files according to the type of the image. The GUI though should create one
header file that will contain the grayscale image or three header files that will contain the R, G
and B components of the colored image. The processing results are transferred to the GUI
using the RTDX technology.

In the following paragraphs the creation of the CCS project for each algorithm as well as
the development of the GUI in LabVIEW is described thoroughly.

4.2.1 Edge Detection

One of the most simple image processes is the edge detection. Edges are detected in
points, where obvious differences in brightness, between neighbor pixels of an image, appear.
The detection of these edges is achieved by correlating the image with a linear filter which is
an approximation of the first derivative, since if the first derivative is calculated along the
image, then the points where it is appeared to be maximum, corresponds to its edges.

Therefore, the edge detection in every direction is archived by correlating the image
with a linear filter. This filter is nothing more than a 3x3 window (or mask) which scans
sequentially all the image. As already known, the edges are computated in two directions
(horizontal and vertical), one 3x3 window is required for each.

The most common pattern for edge detection is the Sobel edge detector. In fact it is the
correlation of two 3x3 masks (Figure 140) with an image that will find the edges on it.

LabVIEW to CCS Link 137

-1 -2 -1 -11 0 1

0|0/ O -11 0 2

1 2 1 -11 0 1
(@) (b)

Figure 140 Sobel masks for edge detection on an image:
(a) along vertical direction (Gy) and (b) along horizontal direction (Gx)

Implementation of Sobel edge detection

The C code of the DSP_Sobel rtdx.c that implements the Sobel edge detection on a
grayscale image is presented below.

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <rtdx.h> /* RTDX Data Read */
#include <stdio.h> /* printf */
#include "target.h" /* TARGET _INITIALIZE */
#define IMAGE_SIZE 65536

#define H 256

#define W 256

#define MAX MESSAGES 256
#define MAX_ELEMENTS 256

#include "scenary.h" /* contains input image as a 1D array */

#pragma DATA_SECTION (image in, "IM_in")
#pragma DATA_SECTION (image out,"IM_out")
#pragma DATA_ SECTION (Gx, "Gx_var")
#pragma DATA_SECTION (Gy, "Gy_var")
#pragma DATA SECTION (message, "msg_var")

unsigned char image in[[IMAGE_SIZE];
unsigned char image out[IMAGE_SIZE];
unsigned char GX[IMAGE_SIZE];

unsigned char Gy[IMAGE_SIZE];

unsigned char message[MAX ELEMENTS];

RTDX CreateOutputChannel(ochan); /* Channel to use to write data */
// Find Sobel edges

void Sobel edges()

{ . .
int1;
int w00, w01, w02;
int wlo, wl2;

138

4. Applications

int w20, w21, w22;
int x_edge, y edge;
int f edge ;

for(i=0; i<IMAGE_SIZE; i++) // Clear arrays
{

Gx[i] = 0;

Gy[i] = 0;

image out[i] = 0;

}

for (i=0; i<(W*(H-2)-2); i++)

{
w00 = image_in[i];
w01 =image _in[i+1];
w02 = image_in[i+2];
w10 =image in[W+i];
w12 =image in[W+i+2];
w20 = image in[(2*W)+i];
w21 =image in[(2¥*W)+i+1];
w22 =image in[(2*W)+i+2];

x_edge =- w00 - 2*w10 - w20 + w02 + 2*w12 + w22 ;
y_edge =- w00 - 2*w01 - w02 + w20 + 2*w21 + w22 ;
f edge = (abs(x_edge) + abs(y_edge))/2 ;

if (f edge>255) f edge = 255;
if (f edge<0) f edge=0;

image out[i+1]=1f edge;

if (x_edge>255) x_edge = 255; /I View Gx & Gy edges
if (x_edge<0) x_edge=0;
if (y_edge>255) y_edge = 255;
if (y_edge<0) y edge=0;
Gx[it+1] =x_edge;
Gy[i+1] =y _edge;
} // end for loop
h

// Main program

void main ()

{
int i, j;
TARGET _INITIALIZE(); // Target initialization for RTDX
Sobel edges();
RTDX_enableOutput(&ochan); // Enable the output channel, "ochan"
for (i=0; i<IMAGE_SIZE; i+=MAX_ ELEMENTYS)

{
for (j=i; j<(itMAX_ELEMENTS); j++)

LabVIEW to CCS Link 139

{
message[j-i] = (unsigned char) image out[j]; //write one row (256 elements)
}
if (RTDX write(&ochan, message, sizeof(message))) //Send the data to the host
{
fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();
H

}

puts("\n Program Completed!");

} // End main program

Program 6. The C code of the DSP_Sobel rtdx.c

In Program 6 the files stdlib.h, string.h, math.h, rtdx.h, stdio.h, target.h, and scenary.h
are included. The rtdx.h contains the declarations of the functions related to the RTDX
technology. The target.h contains the declaration of the TARGET INITIALIZE() function
that initializes the DSP and activate s the interrupts in order to enable the RTDX technology.
The scenary.h the image to be processed with dimension of 256 x 256 pixels. The #pragma
directives define the memory areas, where the arrays related to the image are saved. The
allocation of the DSP memory is achieved by the rtdx_sobel.cmd (Program 7)

Before the declaration of the main() function the RTDX channel “ochan” is defined that
will transfer the processing result from DSP to GUI. The channel “ochan” transfers from DSP
an array of 256 numbers, that represents a line from the final image, to GUIL

In the main() function, firstly the DSP is initialized and the RTDX technology is
enabled. Then the edges of the image are detected by using the Sobel edges() function, which
is declared right before the main() function. The RTDX channel output “ochan” is enabled
and the image is being transferred from the DSP to GUI. This transfer of the final image is
carried out gradually meaning that each time only one line of the final image is written to the
RTDX channel.

-C
-heap 0x1000
-stack 0x1000
-u__ vectors
-u_auto_init

_HWI_Cache_Control = 0;
_RTDX interrupt_mask = ~0x000001808;

MEMORY

{
VECS: 0=00000000h 1=00000200h /* interrupt vectors */
PMEM: 0=00000200h 1=0000FE0Oh /* Internal RAM (L2) mem */
BMEM: 0=80000000h 1=01000000h /* CEO, SDRAM, 16 Mbytes */

}

SECTIONS

140

4. Applications

{

.intvecs > Oh

text > BMEM
atdx text > BMEM
far > BMEM
.stack > BMEM
.bss > BMEM
.cinit > BMEM
.pinit > PMEM
.cio > BMEM
.const > BMEM
.data > BMEM
atdx_data > BMEM
.switch > BMEM
.sysmem > BMEM
IM_in > BMEM
IM_out > BMEM
Gx_var > BMEM
Gy _var > BMEM
msg var > BMEM

H

Program 7. The rtdx_sobel.cmd

The project that will be created for the edge detection on a grayscale image is
RTDX Sobel edges.pjt. Apart from the files DSP_Sobel rtdx.c and rtdx_sobel.cmd decribed
above, the intvecs.asm, that was developed by TI and is included in CCS, should also be
added. For the DSP_Sobel rtdx.c the local optimization File (-03) is selected. Furthermore,
the libraries rtdx.lib (or rtdxsim.lib if a simulator is used) and rts6701.lib should be added as

well. In Figure 141 the View Window of the CCS project is presented.

& Files

+-]_7] GEL files

- a Projects

- ﬁ RTDX_Sobel_edges.pjt {Debug)
(L] Dependent. Projects
D Docurnents
(L] DsRjBIOS Config
[Generated Files
=3 Include

B

E] rtdeh

E] RTD¥_access.h

=] rtdxpall.k

=] scenary.h

=] target.h

-1-£5] Libraries

(%] rtdx.lib

[&] rtst70Llib

—-£3] Source

E D5P_sobel_rtdx.c

3 intvecs, asm

rkdx_sobel.crd

Figure 141. The CCS View Window for the RTDX_ Sobel edges.pjt

LabVIEW to CCS Link 141

4.2.2 Direct and Inverse Discrete Cosine Transformation

The Discrete Cosine Transform or DCT represents the most common option for the
transformation of an image from the spatial domain to the frequency domain, because of it’s
attributes such as the energy compaction. This is the reason why it is adopted by the most
coding standards regarding not only still images, like JPEG and MPEG-7, but the video like
MPEG-1, MPEG-2 and MPEG-4, as well.

One of the characteristics of the DCT is the energy compaction. This means that when it
is applied in every 8x8 block of the image, the major percentage of the energy is compacted to
low frequencies and especially to the 1° coefficient of each block, called DC coefficient. The
rest 63 coefficients are called AC coefficients and they cover very small percentage of energy
compared to the DC coefficient. The arrangement of the 8x8 DCT coefficients is shown in
Figure 142.

The low frequencies are located to the upper left corner of the block, while the high
frequencies are located to the lower right corner of the block. The energy of a DCT coefficient
corresponds actually to the information included, so the DC coefficient is the one that contain
the major percentage of information of each 8x8 block, while the AC coefficients contain a
very small percentage of the information that corresponds to the details of the 8x8 block of
image. Therefore, by applying the DCT in every 8x8 block of an image, the energy (and
consequently the information) of each block is compacted to the low frequencies, which is
actually the DC coefficient, few of the neighbor AC coefficients (ACy;, ACjo, ACyy, etc). The
rest AC coefficients, mainly in high frequencies are redundant information and they can be
removed (take 0 values) during quantization.

DC |AC,, |ACy,

AC,, | AC{, | ACy,

AC AC AC

21 22

64 DCT coefficients

Figure 142. Arrangement of DCT coefficients in each 8x8 block

The two-dimension DCT is a very demanding algorithm, since it requires a great
number of calculations (additions, multiplications and abstractions). So, the implementation
of the 2D-DCT on an image based on its definition (equation 9.1) has no meaning at all, since
it cannot be applied in real-time. For this reason, the 2D-DCT is carried out with two 1D-
DCTs first on lines and then on rows of each 8x8 block of the image. This implementation is
consider to be slow (seconds), but it is though fastest than the direct implementation of the
2D-DCT. An optimized algorithm that implements the DCT, based on McGovern’s algorithm
is presented below.

In order to control the accurate function of the algorithms, apart from the direct DCT,
the inverse DCT (IDCT) is also applied. The DCT belongs to the orthogonal transformations,
a basic attribute of which is the reversibility. This means that by expressing the DCT as a
product of arrays, meaning D" = W*D (where W is the transform array, D is the array of data)

142 4. Applications

and multiplying with the inverted transformation array W', the initial array D is obtained
again. So by applying on an image the direct DCT and then the IDCT, the result is the rebuild
of the initial image.

Implementation of the 2D-DCT using the 1D-DCT

For the implementation of the 2D-DCT using the 1D-DCT, the files Dct Main_rtdx.c,
dct_main.h, Dct.c, Idct.c and rtdx DCTslow.cmd have been created and they are presented
below.

Program 8 shows the Dct Main rtdx.c, in which the stdlib.h, time.h, rtdx.h , stdio.h,
target.h, dct main.h and scenary.h are included. The header file rtdx.h contains the
declarations of the functions related to the RTDX technology. The target.h includes the
declaration of function TARGET INITIALIZE(), which initializes the DSP and activates the
interrupts so for the RTDX technology to be enabled. The dct main.h contains the
declarations of some constants, such as IMAGE LEN and BLOCK LEN and it is presented
in Program 9. The scenary.h the image to be processed with dimension of 256 x 256 pixels.
The #pragma directives define the memory areas, where the arrays related to the image are
saved.. The allocation of the DSP memory is carried out in file rtdx DCTslow.cmd (Program
13)

Before the declaration of the main() function, the RTDX channel “ochan” that transfers
the processing result from DSP to GU, is defined. The channel “ochan” transfers from DSP
an array of 256 numbers that represents a line from the final image, to GUI.

In main() function, the DSP is initialized DSP and the RTDX technology is enabled.In
each 8x8 block of the image, the direct DCT is applied by calling the dc#() function. Similarly
the IDCT is applied by calling the dct() function. The dct() and idct() functions are going to be
presented below. The RTDX channel output “ochan” is enabled and the image is being
transferred from the DSP to GUI. This transfer of the final image is carried out gradually
meaning that each time only one line of the final image is written to the RTDX channel.

#include <stdlib.h>
#include <time.h>

#include <rtdx.h> // RTDX Data Read
#include <stdio.h> // printf
#include "target.h" // TARGET _INITIALIZE

#define DSK6711 cps 150000000 //150 MHz C6711 CPU clock (cps -> Clocks Per Second)

#include "dct_main.h" //Includes and Constants used

#pragma DATA SECTION (image in,"myvar(Q")

#pragma DATA_SECTION (image out,"myvarl")

#include "scenary.h" //An h file containing input image as a 1D array

unsigned char image out[IMAGE_SIZE];
short block| BLOCK SIZE];

clock t start, stop;
double duration;

#pragma DATA_SECTION (message, "msg_var")

RTDX_CreateOutputChannel(ochan); //Channel to use to write data

LabVIEW to CCS Link 143
#define MAX MESSAGES 256
#define MAX ELEMENTS 256
unsigned char message[MAX ELEMENTS];
//Q12 DCT coefficients (actual coefficient x 212))
const short coe[8][8]=
{
4096, 4096, 4096, 4096, 4096, 4096, 4096, 4096,
5681, 4816, 3218, 1130, - 1130, -3218, -4816, -5681,
5352, 2217, -2217, -5352, -5352, -2217, 2217, 5352,
4816, -1130, -5681, -3218, 3218, 5681, 1130, -4816,
4096, -4096, -4096, 4096, 4096, -4096, -4096, 4096,
3218, -5681, 1130, 4816, -4816, -1130, 5681, -3218,
2217, -5352, 5352, -2217, -2217, 5352, -5352, 2217,
1130, -3218, 4816, -5681, 5681, -4816, 3218, -1130
}5
//FUNCTIONS USED
void dct(void); // dct.c
void idct(void); // idct.c
//IMAIN FUNCTION
void main()
{
int row, col, X, y;
int i,j;
TARGET _INITIALIZE(); //Target initialization for RTDX
start = clock();
//[FORWARD DCT/ INVERSE DCT
// block by block processing
for (row=0; row<IMAGE_LEN; row+=BLOCK_LEN)
for (col=0; col<IMAGE LEN; col+=BLOCK LEN)
{
for (y=0, i=0; y<BLOCK_LEN; y++) // get the block from the input image
{
for (x=0; x<BLOCK_LEN; x++, i++)
block[i] = (short) image in[(col+x)+(row+y)*IMAGE_LEN];
}
dct(); /Iperform FDCT on this block
idct(); //perform IDCT on this block
for (y=0, i=0; y<BLOCK_LEN; y++) // store block to output image
{
for (x=0; x<BLOCK_LEN; x++, i++)
{ //Quick fix for errors occurring due to negative a values
if(block[i]<0) //occurring after IDCT!*/
image_out[(col+x)+(row+y)*IMAGE LEN]=(unsigned char) (-block[i]);
else

image_out[(col+x)+(row+y)*IMAGE_LEN]=(unsigned char) block][i];

144 4. Applications

}

stop = clock();
duration = (double) (stop - start) / DSK6711 cps;

RTDX enableOutput(&ochan); // Enable the output channel, "ochan"
for (i=0; i<IMAGE_SIZE; i+=MAX_ ELEMENTYS)
{
for (j=i; j<(i+tMAX_ELEMENTYS); j++)
{
message[j-i] = (unsigned char) image out[j]; //Write one row (256 elements)
}
if ('RTDX_write(&ochan, message, sizeof(message))) //Send the data to the host
{
fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();
h
}

puts("\nProgram Completed!");

printf("\n %s ", " The algorithm implementation completed in");
printf("%5.5f %s \n\n", duration, "seconds");

puts(" Completed Successfully!\n");

Program 8. The C code of the dct Main_rtdx.c

In Program 9 the header file dct main.h is presented, which contains the declarations of
some constants, such as IMAGE LEN and BLOCK LEN, with values of 256 and 8§
respectively. In addition, the constants IMAGE SIZE and BLOCK SIZE (with values of
65536 and 64) that correspond to image’s size and block’s size used, are also defined.

#ifndef DCT_ MAIN_H

#define IMAGE LEN 256
#define IMAGE_SIZE (IMAGE_LEN*IMAGE_ LEN)

#define BLOCK_LEN 8
#define BLOCK_SIZE (BLOCK LEN*BLOCK LEN)

#endif

Program 9. The dct_main.h header file

In Program 10 the Dct.c is presented, which contains the dct() function that implements
the 2D-DCT in an 8x8 block of the image, using the 1D-DCT. In the beginning of the code
the arrays image in and image out are declared as extern image in and image out (they
contain the data of the initial and the rebuilt image respectively) as well as the arrays block

LabVIEW to CCS Link 145

and coe. The block array contains 64 elements that correspond to the 64 DCT coefficients of
one 8x8 block, while the array coe contains the 64 values of the C'(k)cos[(2i+1)kz/16]

terms, multiplied by 2'2 (Q-12 format).

A variable is declared with the key-word extern, when it is needed to be visible by other
code files that are included in the same project. This is happening in a case where a variable is
called in more than one C code files of the same project. In this specific case, the four arrays
that have been declared as extern are visible so they can be used by the Dct.c, Idct.c and
Dct Main.c.

#include "dct_main.h"

extern unsigned char image in[IMAGE_SIZE];
extern unsigned char image out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];

extern const short coe[8][8];

void dct(void)
{
int 1,j,X,y;
int value[8];

for(j=0;j<8;j++) //perform 1D DCT on the columns
{
for(y=0;y<8;++y)
{
value[y]=0;

for(x=0;x<8;++x)
value[y] += (int)(coe[y][x]*block[j+(x*8)]);
}
for(y=0;y<8;++y)
block[j+(y*8)] = (short)(value[y]>>12);

}
for(i=0;i<64;i+=8) // perform 1D DCT on the resulting rows
{
for(y=0;y<8;++y)
{
value[y] = 0;
for(x=0;x<8;++x)
value[y] += (int)(coe[y][x]*block[i+x]);
}

for(y=0;y<8;++y)
block[ity] = (short)(value[y]>>15);

Program 10. The C code of the Dct.c

In Program 11 that follows, the implementation code of the 2D-IDCT is described. Here,
like the direct DCT, the arrays image in, image out, block and coe are declard as extern. This
file implements the idct() function, which actually is the 8x8 block 2D-IDCT and replaces to
the block the 64 values of the DCT coefficients with the 64 values of the rebuilt pixels.

146

4. Applications

#include "dct_main.h"

extern unsigned char image in[IMAGE SIZE];
extern unsigned char image out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];

extern const short coe[8][8];

void idct(void)
{
int 1,j,X,y;
int value[8];

for(j=0;j<8;j++) // perform 1D IDCT on the columns

{
for(y=0;y<8;++y)

value[y] = 0;
for(x=0;x<8;++x)
value[y] += (int)(coe[x][y]*block[j+(x*8)]);
}
for(y=0;y<8;++y)
block[j+(y*8)] = (short)(value[y]>>12);

h
for(i=0;1<64;1+=8) // perform 1D IDCT on the resulting rows
{
for(y=0;y<8;++y)
{
value[y] = 0;
for(x=0;x<8;++x)
value[y] += (int)(coe[x][y]*block[i+x]);
}
for(y=0;y<8;++y)
block[ity] = (short)(value[y]>>15);
}
}
Program 11. The C code of the Idct.c
The memory allocation is completed in rtdx DCTslow.cmd and it is presented in
Program 12.
-c
-heap 0x1000
-stack 0x1000
-u__ vectors

-u_auto_init
_HWI Cache Control = 0;
_RTDX interrupt mask = ~0x000001808;

MEMORY
{

LabVIEW to CCS Link

147

}

VECS:
PMEM:

BMEM:

SECTIONS

{

}

.ntvecs
text
rtdx_text
far

.stack
.bss

.cinit
.pinit

.cio
.const
.data
rtdx_data
.switch
.sysmem

myvarQ
myvarl

0=00000000h
0=00000200h

0=80000000h

Oh

BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
PMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM

VVVVVVVVVVYVVVYV

\

BMEM
BMEM

V

1=00000200h
1=0000FEO0Oh

1=01000000h

/* interrupt vectors
/* Internal RAM (L2) mem

/* CEO, SDRAM, 16 MBytes

*/

*/

*/

Figure 143. The View Window of CCS for the RTDX DCT_Slow.pjt

Program 12. The rtdx_ DCTslow.cmd

@ Files

+1-|_7] GEL Files

- a Projects
=) £z§ RTDX_DCT_Slow.pijt {Debug)

(3 Dependent Projects
[:l Docurnents

(L DSP/BIOS Config
(3 cenerated Files

=3 Include

=] cx.h

E] det_main.h

=] rtde.h

=] RTD%_access.h
E] rtdpall.h

=] scenary.h

E] target.h

-1 Libraties

(%] rrdxsim.lib
(%] rtse701 lib

= a Source

3 Dck.c

3 Dck_Main_rtdx.c
%] Idct.c

3 inkvecs,asm
rkdx_DCTslow, crnd

148 4. Applications

In Figure 143 the View Window of the CCS project, named RTDX DCT_Slow.pjt, for
the direct DCT and IDCT application is presented. It should be noticed that these applications
are implemented on a grayscale image, using the 1D-DCT. Apart from the files DCT Main.c,
Dct.c, Idct.c and rtdx DCTslow.cmd used in this project and described above, the files
intvecs.asm that was developed by TI, must also be used. The local optimization File (-03) is
chosen for the DCT Main.c, Dct.c and Idct.c. In addition, the libraries rtdx.lib (ot rtdxsim.lib
for simulator use) and rzs6701.lib, must be added as well.

Implementing the 2D_DCT using the McGovern algorithm

In order to implement the 2D-DCT wusing the McGovern algorithm, the
Dct Main_rtdx.c, dct_main.h, Dct.c, Idct.c and rtdx DCTfast.cmd have been developed and
they are analyzed below.

In Program 13 the Dct Main_rtdx.c, which contains the files stdlib.h, time.h, rtdx.h ,
stdio.h, target.h, dct_main.h and scenary.h, is described. The rtdx.h contains the declarations
of the functions related to the RTDX technology. The farget.h includes the declaration of
function TARGET INITIALIZE(), which initializes the DSP and activates the interrupts so
for the RTDX technology to be enabled. The dct main.h that was analyzed in Program 9
contains the declarations of some constants. The scenary.h contains the 256x256 image to be
processed.

Before the declaration of the main() function, the RTDX channel “ochan” that will
transfer the process results from the DSP to GUI, is defined. The channel “ochan” transfers
from DSP an array of 256 numbers, that represents a line from the final image, to GUI.

In the main() function, firstly the DSO is initialized and the RTDX technology is
enabled. In each 8x8 block of the image the direct DCT is applied,by calling the dct() function
and the and IDCT, by calling the idct() function. The dct() and idct() functions will be
presebted below. The RTDX channel output “ochan” is enabled and the image is being
transferred from the DSP to GUI. This transfer of the final image is carried out gradually
meaning that each time only one line of the final image is written to the RTDX channel.

#include <stdlib.h>
#include <time.h>

#include <rtdx.h> // RTDX Data Read
#include <stdio.h> // printf
#include "target.h" // TARGET _INITIALIZE

#define DSK6711 cps 150000000 // 150 MHz C6711 CPU clock (cps -> Clocks Per Second)

#include "dct_main.h" // Includes and Constants used

#pragma DATA_SECTION (image in,"myvar0")

#pragma DATA SECTION (image out,"myvarl")

#include "scenary.h" // An h file containing input image as a 1D array

unsigned char image out[IMAGE SIZE];
short block| BLOCK SIZE];

clock t start, stop;
double duration;

#pragma DATA SECTION (message, "msg_var")

LabVIEW to CCS Link 149

RTDX CreatelnputChannel(ichan); // Channel to receive data from
RTDX CreateOutputChannel(ochan); // Channel to use to write data

#define MAX MESSAGES 256
#define MAX ELEMENTS 256

unsigned char message[MAX ELEMENTS];

/1 Q12 DCT coefficients (actual coefficient x 2°12)
const short coe[12]={3135,2217,7568,8410,-1598,6149,-10498,4816,-3686,-12586,8035,-1223};

// FUNCTIONS USED

void dct(void); // dct.c
void idct(void); // idct.c
//IMAIN FUNCTION

void main()

{

int 1,j,X;
TARGET _INITIALIZE(); // Target initialization for RTDX
start = clock();

//FORWARD DCT/ INVERSE DCT
//block by block processing
for(i=0;i<IMAGE_SIZE;i+=BLOCK SIZE)
{
// get the block from the input image
for(x=0;x<BLOCK _SIZE;++x)
block[x] = (short) image_in[i+x];

det(); // perform FDCT on this block
idet(); // perform IDCT on this block

// store block to output image
for(x=0;x<BLOCK _SIZE;++x)
{
if(block[x]<0)
image_out[i+x]=(unsigned char) (-block[x]); //Quick fix for errors occurring due to
else //negative a values occurring after IDCT!
image_out[i+x]=(unsigned char) block[x];

}

stop = clock();
duration = (double) (stop - start) / DSK6711 cps;

RTDX enableOutput(&ochan); //Enable the output channel, "ochan"
for (i=0; i<IMAGE_SIZE; i+=MAX_ ELEMENTYS)

{
for (j=i; j<(i*MAX_ELEMENTS); j++)

150 4. Applications

{
b

message[j-i] = (unsigned char) image out[j];//Write one row (256 elements)

if 'RTDX write(&ochan, message, sizeof(message))) //Send the data to the host

fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();

h

puts("\nProgram Completed!");

printf("\n %s ", " The algorithm implementation completed in");
printf("%5.5f %s \n\n", duration, "seconds");

puts(" Completed Successfully!\n");

Program 13. The C code of the DCT Main_rtdx.c

In Program 14 the Dct.c is presented, in which the operation of the dct() function is
defined. This function applies the 2D-DCT on a 8x8 block, using the fast 1D-DCT according
to the McGovern algorithm.

#include "dct_main.h"

extern unsigned char image in[IMAGE_SIZE];
extern unsigned char image out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];

extern const short coe[12];

void det(void)
{
short ADD[20]; /* Table of the addition coefficients */
int M[12]; /* Table of the results of the multiplication */
int postadd1,postadd?2;
int i,j;

for(j=0;j<8;j++)

{ /* first set of additions */
ADD[0]= (block[j]+block[56+i]); /* x(0)+x(7) */
ADDI1]= (block[24+j]+block[32+]); /% x(3)+x(4) */
ADD[2]= (block[8+j]+block[48+]); /% x(1)+x(6) */
ADDJ[3]= (block[16+]+block[40+]]); /* x(2)+x(5) */
ADDI[4]= (block[j]-block[56+i]); /% x(0)+x(7) */
ADDJ[5]= (block[48+]]-block[8+]); /% x(6)-x(1) */
ADDI[6]= (block[24+j]-block[32+]]); /% x(3)-x(4) */
ADD[7]= (block[16+j]-block[40+]]); /* x(2)-x(5) */

/* second set of additions, this is done so previous additions do not need to be repeated */
ADD[8]= (ADD[0]+ADDI1]);

ADDI[9]= (ADD[0]-ADD[1]);

ADDJ[10]=(ADDI[2]+ADD]J3]);

LabVIEW to CCS Link

151

ADD[11]=(ADD[2]-ADD[3]);
ADD[12]=(ADD[4]+ADD[6]);
ADD[13]=(ADD[5]+ADD[7]);
ADD[14]=(ADD[9]+ADDJ[11]);
ADD[15]=(ADD[4]+ADDI[5]);
ADD[16]=(ADD[12]+ADD[13]);
ADD[17]=(ADD[6]+ADD[7]);
ADD[18]=(ADD[8]+ADD[10]);
ADD[19]=(ADD[8]-ADD[10]);

* Multiplications carried out, note: here 14. Includes one over root eight term */
MJ0] = (int)(coe[0]*ADD[9]);
M[1] = (int)(coe[1]*ADD[14]);
M]2] = (int)(coe[2]*ADDJ[11]);
M]3] = (int)(coe[3]*ADD[4]);
M[4] = (int)(coe[4]*ADDI[15]);
M]5] = (int)(coe[5]*ADDI5));
M[6] = (int)(coe[6]*ADD[12]);
M]7] = (int)(coe[7]*ADD[16]);
M[8] =(int)(coe[8]*ADD[13]);
M[9] =(int)(coe[9]*ADD[6]);
M[10]=(int)(coe[10]*ADD[17]);
M[11]=(int)(coe[11]* ADDI[7]);

/* post multiplication, additions + subtractions */

block[j][=ADDJ[18]; /* y(0) */
block[32+j]=ADD[19]; /*y(4)*/
block[16+j]=(short)((M[0]+M[1])>>12); /*y(2) */
block[48+j]=(short)(M[1]-M[2])>>12); /*y(6) */

postadd1= M[6]+M[7];
postadd2= M[7]+M[8];

block[56+j]= (short)((M[3]+M[4]+postadd1)>>12); /*y(7) */
block[40+j]= (short)((M[4]+M[5]+postadd2)>>12); /*y(5) */
block[8+j]= (short)(M[9]+M[10]-postadd1)>>12); /*y(1) */

block[24+{]= (short)((postadd2-M[10]-M[11])>>12); /* y(3) */
}

for(i=0;1<64;1+=8)

{

/* first set of addtions */

ADD[0]=(block[i]+block[i+7]); /* x(0)+x(7) */
ADD[1]=(block[i+3]+block[i+4]); /* x(3)+x(4) */
ADDJ[2]=(block[i+1]+block[i+6]); /* x(1)+x(6) */
ADD[3]=(block[i+2]+block[i+5]); /* x(2)+x(5) */
ADDJ[4]=(block[i]-block[i+7]); /* x(0)-x(7) */
ADD[5]=(block[i+6]-block[i+1]); /* x(6)-x(1) */
ADDJ[6]=(block[i+3]-block[i+4]); /* x(3)-x(4) */
ADD[7]=(block[i+2]-block[i+5]); /* x(2)-x(5) */

/* second set of addtions, this is done so previous additions do not need to be repeated */
ADD[8]=(ADD[0]+ADD[1]);

ADDI[9]=(ADDI[0]-ADDI[1));

ADDJ[10]=(ADD|2]+ADDI3));

ADD[11]=(ADD[2]-ADDI[3));

ADD[12]=(ADD[4]+ADD[6]);

152 4. Applications

ADD[13]=(ADD[5]+ADD[7]);
ADD[14]=(ADD[9]+ADDJ[11));
ADD[15]=(ADD[4]+ADDI[5]);
ADD[16]=(ADD[12]+ADD[13]);
ADD[17]=(ADD[6]+ADD[7]);
ADD[18]=(ADD[8]+ADD[10]);
ADD[19]=(ADD[8]-ADD[10]);

/* Multiplications carried out, note: here 14. Includes one over root eight term */
M][0]= (int)(coe[0]*ADDI[9]);
M[1]= (int)(coe[1]*ADD[14]);
M]2]= (int)(coe[2]*ADD[11]);
M[3]= (int)(coe[3]*ADD[4]);
M[4]= (int)(coe[4]*ADDJ[15]);
M]5]= (int)(coe[5]*ADD[5]);
M[6]= (int)(coe[6]*ADD[12]);
M[7]= (int)(coe[7]*ADDJ[16]);
M[8]=(int)(coe[8]*ADDJ[13]);
M[9]=(int)(coe[9]*ADDI[6]);
M[10]=(int)(coe[10]* ADD[17]);
M[11]=(int)(coe[11]*ADD[7]);

/* post multiplication, additions + subtractions */

block[i]=(short)(ADD[18]>>3); /% y(0) */
block[i+4]=(short)(ADD[19]>>3); /% y(4) */
block[i+2]=(short)(M[0]+M[1])>>15); /% y(2) */
block[i+6]=(short)(M[1]-M[2])>>15); /% y(6) */

postadd1= M[6]+M[7];
postadd2= M[7]+M[8];

block[i+7]= (short)(M[3]+M[4]+postadd1)>>15); /*y(7) */

block[i+5]= (short)(M[4]+M[5]+postadd2)>>15); /*y(5) */

block[i+1]= (short)(M[9]+M[10]-postadd1)>>15); /*y(1) */

block[i+3]= (short)((postadd2-M[10]-M[11])>>15); /*y(3) */
H

Program 14. The C code of the Dct.c

In Program 15 the Idct.c, is presented, in which the operation of the idct()is defined.
This function applies the 2D-DCT on a 8x8 block, using the fast 1D-DCT according to the
McGovern algorithm.

#include "dct_main.h"

extern unsigned char image in[IMAGE_SIZE];
extern unsigned char image out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];

extern const short coe[12];

void idct(void)
{

LabVIEW to CCS Link

153

short z[8],ADD[7];
int PA[4];

int M[13];

int i,j;

for(j=0;j<8:j++)

{ /* pre-additions */
ADD[0]=block[56+j]+block[40+{];
ADDJ1]=block[56+j]-block[8+{];
ADD|2]=block[24+]+block[40+{];
ADDJ[3]=block[j]+block[32+];
ADD[4]=block[16+j]+block[48+{];
ADD[5]=block[24+]]-block[8+]];
ADD[6]=ADD[0]+ADDI[5];

/* multiplications */
M][0]=(int)(coe[0] * block[16+]]);
M[1]=(int)(coe[1] * ADD[4]);
M]2]=(int)(coe[2]*block[48+]);
M[3]=(int)(coe[3]*block[56+]]);
M[4]=(int)(coe[4]*ADDI[0]);
M]5]=(int)(coe[5]*block[40+j]);
M[6]=(int)(coe[6]* ADD[1]);
M[7]=(int)(coe[7]*ADD][6]);
M][8]=(int)(coe[8]*ADDI[2]);
M][9]=(int)(coe[9]*block[8+j]);
M[10]=(int)(coe[10]*ADD[5]);
M[11]=(int)(coe[11]*block[24+]]);
M[12]=(int)(block[32+j]<<1);

/* post additions */
PA[O]=(M[O]+M[1])>>12);
PA[1]=(int)ADD[3]-M[12];
PA[2]=M[4]+M[7];
PA[3]=M][7]-M[10];

z[0]=ADD[3]+(short)PA[0];
z[1]1=ADD[3]-(short)PA[0];
z[2]=(short)PA[1]+(short)(M[1]-M[2])>>12);
z[3]=(short)PA[1]+(short)(M[2]-M[1])>>12);
z[4]=(short)(PA[2]+M[6]+M[3])>>12);
z[5]=(short)(PA[2]+M[5]+M[8])>>12);
z[6]=(short)(PA[3]+M[6]+M[9])>>12);
z[7]1=(short)(PA[3]+M[8]-M[11])>>12);

block[j]=z[0]+z[4];
block[8+j]=z[2]-z[5];
block[16+j]=z[3]+2[7];
block[24+j]=z[1]+2[6];
block[32+j]=z[1]-2[6];
block[40+j]=2[3]-2[7];
block[48+j]=z[2]+2z[5];
block[56+j]=z[0]-z[4];
H

for(i=0;1<64;1+=8)

I y(T+y(5) */
/*y(7)-y(1) */
/*y@3)+y(5) */
/* y(0)+y(4) */
/*y(2)ty(6) */
/*y(3)-y(1) */

/% A*y(2) */

/% C*y(6) */
/% D*y(7) */

/% Fry(5) */

/% Ty (1) */

/% L¥y(3) */
J% 2%y (4) */

/% x(0) */
/% x(1) */
/% x(2) */
/% x(3) */
/% x(4) */
/% x(5) */
/% x(6) */
/% x(7) */

154

4. Applications

{ /* pre-additions */
ADD[0]=block[i+7]+block[i+5];
ADDJ1]=block[i+7]-block[i+1];
ADDJ[2]=block[i+3]+block[i+5];
ADDJ3]=block[i]+block[i+4];
ADDJ[4]=block[i+2]+block[i+6];
ADDJ5]=block[i+3]-block[i+1];
ADD[6]=ADDI[0]+ADDJ5];

/* multiplications */
M]0]=(int)(coe[0]*block[i+2]);
M]1]=(int)(coe[1]*ADD[4]);
M]2]=(int)(coe[2]*block[i+6]);
M]3]=(int)(coe[3]*block[i+7]);
M[4]=(int)(coe[4]*ADDI[0]);
M]5]=(int)(coe[5]*block[i+5]);
M][6]=(int)(coe[6]*ADDJ[1]);
M[7]=(int)(coe[7]* ADD[6]);
M][8]=(int)(coe[8]* ADD[2]);
M][9]=(int)(coe[9]*block[i+1]);
M[10]=(int)(coe[10]*ADDI5]);
M]11]=(int)(coe[11]*block[i+3]);
M[12]=(int)(block[i+4]<<1);

/* post additions */
PA[O]=(int)((M[O]+M[1])>>12);
PA[1]=(int)((ADD[3]-M[12])>>3);
PA2I=M[4+M[7];
PA[3]=M[7]-M[10];

2[0]=(ADD[3]+(short)PA[0])>>3;
z[1]1=(ADD[3]-(short)PA[0])>>3;
2[2]=(short)PA[1]+(short)(M[1]-M[2])>>15);
2[3]=(short)PA[1]+(short)(M[2]-M[1])>>15);
2[4]=(short)(PA[2+M[6]+M[3])>>15);
2[5]=(short)(PA[2]+M[5]+M[8])>>15);
2[6]=(short)(PA[3+M[6]+M[9])>>15);
2[7]=(short)(PA[3]+M[8]-M[11])>>15);

block[i+0]=(z[0]+z[4]);
block[i+1]=(z[2]-z[5]);
block[i+2]=(z[3]+2z[7]);
block[i+3]=(z[1]+2[6]);
block[it4]=(z[1]-z[6]);
block[i+5]=(z[3]-2[7]);
block[i+6]=(z[2]+z[5]);
block[i+7]=(z[0]-z[4]); /* x[7] */
H

/*y(T)+y(5) */
/*y(7)-y(1) */
/*y@3)+y(5) */
/* y(0)ty(4) */
/*y(2)ty(6) */
/*y(3)-y(1) */

/% A*y(2) */

/% CHy(6) */
/% D*y(7) */

/% Fry(5) */

/% TRy(1) */

/% L¥y(3) */
/% 2%y (4) */

/% x[0] */
/% x[1] */
/% x[2] */
/% x[3] */
/% x[4] */
/% x[5] */
/% X[6] */

16.

Program 15. The C code of the Idct.c

The memory allocation is completed in rtdx_DCTfast.cmd and it is presented in Program

LabVIEW to CCS Link

155

-C

-heap 0x1000
-stack 0x1000

-u__ vectors
-u_auto_init

_HWI Cache Control = 0;

_RTDX interrupt mask = ~0x000001808;

MEMORY
{

VECS: 0=00000000h
PMEM: 0=00000200h
BMEM: 0=80000000h

}

SECTIONS

{ .
.Intvecs
text
rtdx_text
far
.stack >
.bss >
.cinit
.pinit
.clo >
.const >
.data
rtdx_data>
.switch
.sysmem

myvar(
myvarl
msg_var

}

V

Oh

BMEM
BMEM
BMEM

BMEM
BMEM

>
>

BMEM
PMEM

BMEM
BMEM

>

BMEM

BMEM

>

BMEM
BMEM

BMEM
BMEM
BMEM

1=00000200h
1=0000FEOOh
1=01000000h

/* interrupt vectors */
/* Internal RAM (L2) mem
/* CEO, SDRAM, 16 MBytes

*/

*/

Program 16. The rtdx DCTfast.cmd

Figure 144 the View Window of the CCS project, named RTDX DCT Fast.pjt, for the
direct DCT and IDCT application is presented. It should be noticed that these applications are
implemented on a grayscale image, using the 1D-DCT. Apart from the files DCT Main.c,
Dct.c, Idct.c and rtdx DCTfast.cmd used in this project and described above, the files
intvecs.asm that was developed by TI, must also be used. The local optimization File (-03) is
chosen for the DCT Main.c, Dct.c and Idct.c. In addition, the libraries rtdx.lib (ot rtdxsim.lib
for simulator use) and rzs6701.1ib, must be added as well.

156 4. Applications

@ Files

+-[Z] GEL files

—1-£23] Projects

- ggh RTDX_DCT_Fast.pjt (Debug)
(21 Dependent Projects
I:I Dacurents
|23 DspiEIOS Config
[C] =enerated Files
-3 Include

E] céxh

E] dct_main.h

=] rtdx.h

% RTDw _access.h

=] rrdxpall.b

E] scenary.h

% karget.b

-3 Libraries

[&] rrdx.lib

[£] rts6701.lb

= a Source

3 Dck.c

E Dck_Main_rkd:.c

[#] dct.c

3 inkvecs. asm

rbdx_DCTFast, cmd

Figure 144. The View Window of CCS for the RTDX DCT Fast.pjt

4.2.3 JPEG standard encoding and decoding

JPEG is one of the most common known standards for image encoding. Its full name is
Joint Photographic Experts Group, which is the group that developed it. It is the first
international image compression standard for color as well as grayscale pictures.

The JPEG standard defines four encoding modes. Of these four modes, the sequential,
the progressive, and the hierarchical are lossy coding modes while the predictive mode is
lossless. In this section, a part of the baseline JPEG coding is described, which follows the
sequential codec because it is the one used more often. In Figure 145 the structure of one
JPEG encoder.

8x8 block

JPEG Encoder

ocT —# | Quantization |—» Entmpy
transform Encoding

Criginal image

Figure 145. The JPEG encoder

As shown in Figure 145, the JPEG encoding consists of three main steps: (i) The DCT
transformation, (ii) the quantization) and (iii) the entropy encoding. Some specific operations
on the original image must be done in order for it to enter encoder. The coefficient 128 must
be abstracted from the value of each image’s pixel, shifting the range of luminance values
from [0 255] to [-128 127], with mean value zero. Next, the image is subdivided into 8x8

LabVIEW to CCS Link 157

blocks, where the DCT transform is applied on each block, producing 64 new values that are
called the DCT coefficients (one DC and 63 AC). Any algorithm that implements the DCT
can be used, since the JPEG standard does not define a specific algorithm.

As it is already explained, the information of each 8x8 block has been limited to low
frequencies, meaning the DC coefficient and some AC around it. Therefore the AC
coefficients, in high frequencies mainly, can be pulled to zero, achieving better compression.
The simplest way of pulling to zero the coefficients that do not carry any important
information, is by dividing them with the appropriate values. This procedure is called
quantization of the DCT coefficients. These values are included in the quantization table
introduced by the JPEG standard, and it is shown in Figure 146. The size of this quantization
table is1 8x8 because a 8x8 image block is processed every time.

JPEG quantization table
Luminance

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Figure 146. The quantization table that corresponds to luminance component

The inverse procedure of quantization is called dequantization and is completed during
the decoding of the image. The dequantization procedure includes the multiplication of the
already quantized coefficients (of every 8x8 block) with the respective values of the
quantization table.

The third and last step of a JPEG encoder is the entropy encoding as shown in Figure
145. After the quantization of the DCT coefficients, many of them (in high frequencies
mainly) have been pulled to zero. Therefore, the rest coefficients can be encoding using the
Huffman or Arithmetic coding. It is must be noticed, that the DC coefficient of each 8x8
block is encoding in a different way (DPCM) than the AC coefficients (RLE). This is because
the DC coefficients require more bits for its encoding compared to the AC coefficients. The
part of the entropy encoding is not included in the JPEG encoding that follows, so it will not
be described in detail.

After the entropy encoding, a bit sequence will arise, which is the JPEG encoded image (*.jpg
file). In order for someone to see such an image, it must be decoded following the three steps
shown in Figure 147.

JPEG Decoder
IDCT |«—| Dequantization |€—| ENUOPY |e—o
transform Decoding

Figure 147. The JPEG decoder

Reconstructed
image

158 4. Applications

As shown in Figure 147, The decoding procedure consists of (i) the entropy decoding,
(i1) the dequantization and finally the inverse DCT for the image reconstruction.

Partial Implementation of JPEG image encoding

In order to implement a part of JPEG encoder and decoder, the jpeg.c and
jpeg main.h have been developed, and they are described below.

In Program 17 the jpeg.c is presented, partially implementing the JPEG encoder and
decoder, for a binary 256x256 image. The parts of the JPEG encoder that are implemented are
the direct DCT, as well as the quantization procedure. The parts of the JPEG decoder that are
implemented are the dequantization procedure and the IDCT for image reconstruction.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <rtdx.h> /* RTDX Data Read */
#include "target.h" /* TARGET INITIALIZE */
#include "jpeg_main.h" /* Includes and Constants used */

#pragma DATA _SECTION (image in,"myvar0")
#pragma DATA_SECTION (image out,"myvarl")
#pragma DATA_SECTION (array,"myvar2")
#pragma DATA _SECTION (array2,"myvar3")

#include "scenary.h" /* An h file containing input image as a 1D array */
#pragma DATA SECTION (message, "msg_var")

RTDX_CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX MESSAGES 256
#define MAX ELEMENTS 256

unsigned char message[MAX ELEMENTS];

unsigned char image out[IMAGE SIZE];

float array[H][W];

float array2[H][W];

int q_table[8][8] ={ {16,11,10,16,24,40,51,61},
{12,12,14,19,26,58,60,55},
{14,13,16,24,40,57,69,56},
{14,17,22,29,51,87,80,62},
{18,22,37,56,68,109,103,77},
{24,35,55,64,81,104,113,92},
{49,64,78,87,103,121,120,101},
{72,92,95,98,112,100,103,99} };

float cosine[8][8]= {
{1.00000, 0.98078, 0.92388, 0.83147, 0.70711, 0.55557, 0.38268, 0.19509 },
{1.00000, 0.83147, 0.38268, -0.19509, -0.70711, -0.98078, -0.92388, -0.55557 },
{1.00000, 0.55557,-0.38268, -0.98078, -0.70711, 0.19509, 0.92388, 0.83147 },
{1.00000, 0.19509, -0.92388, -0.55557, 0.70711, 0.83147, -0.38268, -0.98078 },
{1.00000, -0.19509, -0.92388, 0.55557, 0.70711, -0.83147, -0.38268, 0.98078 },
{1.00000, -0.55557, -0.38268, 0.98078, -0.70711, -0.19509, 0.92388, -0.83147 },
{1.00000, -0.83147, 0.38268, 0.19509, -0.70711, 0.98078, -0.92388, 0.55557 },

LabVIEW to CCS Link 159

{1.00000, -0.98078, 0.92388, -0.83147, 0.70711, -0.55557, 0.38268, -0.19509 }};

/* image_in 1d --> 2d array */
void read image()
{

int i, j;

for(i=0; i<H; i++)
for(j=0; j<W; j++)
{

array[i][j]=image in[W*i+j];
H

/*DCT 8x8 blocks by 1-dimensional way. First rows and then columns. */
void det()

{
int X,y,i,m,n;
float t array[8];
float temp,c1;

/¥*¥% 1D DCT on rows ***/
for(m=0; m<H; m+=8) {
for(n=0; n<W; n+=8) {
for(x=m; x<m+8; x++) {
for(y=n; y<n+8; y++) {
temp = 0.0;
for(i=n; i<n+8; i++) {
temp += array[x][i] * cosine[i-n][y-n];

}

if((y-n)==0) cl = invsqrt2;
if((y-n)>0) cl =1;
array2[x][y] = (float)(temp * c1/2);

}

/*¥** 1D DCT on cols ***/
for(n=0; n<W; n+=8) {
for(m=0; m<H; m+=8) {
for(y=n; y<n+8; y++) {

for(x=m; x<m+8; x++){
temp = 0.0;
for(i=m; i<m+8; i++){

temp += array2[i][y] * cosine[i-m][x-m];

}
if((x-m)==0) cl = invsqrt2;
if((x-m)>0) ¢l =1;
t_array[x-m] = (float)(temp * c1/2);

}

for(i=0; 1<8; i++){
array2[m+i][y] =t _array[i];

}

160 4. Applications

}
}

/* Quantization */
void quantization()

{

int1i,j, m, n;

for(m=0; m<H; m+=8) {
for(n=0; n<W; n+=8) {
for(i=m; i<m+8; i++) {
for(j=n; j<n+8; j++) {
array2[i][j] = ROUND((float)(array2[i][j]/q_table[i-m][j-n]));
h

}
b

/* Dequantization */
void dequantization()

{

int i, j, m, n;

for(m=0; m<H; m+=8) {
for(n=0; n<W; n+=8) {
for(i=m; i<m+8; i++) {
for(j=n; j<n+8; j++) {
array2[i][j]*=(q_table[i-m](j-n]);

H
H
}
H
H
/* Inverse DCT 1-dimensional way (idct) */
void idct()
{

int x,y,i,m,n;
float t array[8];
float temp,c1;

/* IDCT on Rows */
for(m=0; m<H; m+=8) {
for(n=0; n<W; n+=8) {
for(x=m; x<m+8§; x++) {
for(y=n; y<n+8; y++) {

temp = 0.0;

for(i=n; i<n+8; i++){
if((i-n)==0) cl = invsqrt2;
if((i-n)>0) cl =1;
temp += (float) (array2[x][i] * cosine[y-n][i-n] * c1/2);

LabVIEW to CCS Link

161

t_array[y-n] = temp;

}

for(i=0; i<8; i++){
array2[x|[n+i] =t _array][i];

}

}
}
/* IDCT on cols */
for(n=0; n<W; n+=8) {
for(m=0; m<H; m+=8){
for(y=n; y<n+8; y++){
for(x=m; x<m+8; x++){
temp = 0.0;
for(i=m; i<m+8; i++){
if((i-m)==0) cl = invsqrt2;
if((i-m)>0) cl =1;

temp += (float)(array2[i][y] * cosine[x-m][i-m] * c1/2)

}
array[x][y] = temp;

}
b

/* Rounds output image pixel values */
void write_image out()
{- ..
nt 1,);
int temp;

for(i=0;i<IMAGE_LEN;i++)
for(j=0;j<IMAGE_LEN;j++) {
temp =(int)(ROUND(array[i][j]));
if(temp<0) temp=0;
if(temp>255) temp=255;
image out[IMAGE_LEN¥*i+j] = (unsigned char) temp;

/* main */
void main()

{

int i,j;
TARGET _INITIALIZE(); /* Target initialization for RTDX */

read_image();

det() ; /* DCT (1-d way) */
quantization();

dequantization();

idet(); /* IDCT (1-d way) */
write_image out();

b

162 4. Applications

RTDX enableOutput(&ochan); /* Enable the output channel,"ochan" */

for (i=0; i<IMAGE_SIZE; i+=MAX ELEMENTS) {
for (j=i; j<(i+tMAX_ELEMENTY); j++) {
message[j-i] = (unsigned char) image out[j]; /* write one row (256 elements) */
}

/* Send the data to the host */
if 'RTDX write(&ochan, message, sizeof(message))) {
fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();
H
h

/* write a string to stdout */
puts(" Completed Successfully!\n");

}

Program 17. The C code of the jpeg.c

In the jpeg.c, the filesstdio.h, stdlib.h, math.h, rtdx.h , target.h, jpeg main.h and
scenary.h are included. The rtdx.h contains the declarations of the functions related to the
RTDX technology. The target.h includes the declaration of function
TARGET _INITIALIZE(), which initializes the DSP and activates the interrupts so for the
RTDX technology to be enabled. The jpeg main.h, which is presented in Program 18, and
contains declarations of some constants. The scenary.h contains the 256 x 256 image to be
processed.

Before the declarations of the main() function, the RTDX channel “ochan” is defined
that will transfer the process result from DSP to GUI. The channel “ochan” transfers from
DSP an array of 256 numbers, that represents a line from the final image, to GUL

In addition, before the main() function, the read image(), dct(), quantization(),
dequantization(), idct() and write_image_out() functions are described.

In the main() function the DSP is initialized and the RTDX Technology is enabled. By
calling the read image() function, the image is copied to a two-dimension. The direct DCT is
applied on the image by calling the dct() function. The quantization stage is achieved by
calling the quantization() function. In this point, the JPEG encoder has been completed. The
dequantization() function, realizes the dequantization. The JPEG decoder is completed by
calling the idct() function, with which the IDCT is applied on the image. The write image()
function converts the data of the reconstructed image to integers between [0 255] and and
inputs them to the array image out. The RTDX channel output “ochan” is enabled and the
image is being transferred from the DSP to GUI. This transfer of the final image is carried out
gradually meaning that each time only one line of the final image is written to the RTDX
channel.

The jpeg main.h is presented in Program 18, and contains the declarations of some
useful constants such as IMAGE LEN and BLOCK LEN, with values of 256 and 8
respectively. Furthermore, the constants W and H, that correspond to the image’s dimensions,

as well as the constant invsqrt2, that equals to 1/ V2, are declared. Finally the ROUND()

function is defined, which rounds a number to its nearest integer. This function is used for
rounding the values during the quantization stage.

LabVIEW to CCS Link 163

#ifndef JPEG MAIN H

#define IMAGE_LEN 256
#define IMAGE_SIZE (IMAGE_LEN*IMAGE LEN)

#define W 256
#define H 256

#define BLOCK LEN 8
#define BLOCK_SIZE (BLOCK LEN*BLOCK LEN)

#define invsqrt2 0.70710678

#define ROUND(a) (((a)<0)?(int)((a)-0.5):\
(int) ((@) +0.5))

#endif

Program 18. The jpeg main.h

The memory allocation is completed in rtdx JPEG.cmd that is presented in Program 19.

-c

-heap 0x1000
-stack 0x1000
-u__ vectors
-u_auto_init

_HWI Cache Control = 0;
_RTDX interrupt_mask = ~0x000001808;

MEMORY

{
VECS: org = Oh, len= 0x220
IRAM: org = 0x00000220, len = 0x0000FEQO /*internal memory*/
SDRAM: org =0x80020000, len = 0x00fdffff /*external memory*/
SDRAMO: org = 0x80000000, len =0x00010000
SDRAMI: org = 0x80010000, len =0x00010000
FLASH: org=0x90000000, len=0x00020000 *flash memory*/

§

SECTIONS

{
.intvecs > Oh
text > SDRAM
rtdx_text > SDRAM
far > SDRAM
.stack > SDRAM
.bss > SDRAM
.cinit > SDRAM
.pinit > [RAM
.clo > SDRAM
.const > SDRAM

164

4. Applications

.data
rtdx_data
.switch
.sysmem

myvar0
myvarl
myvar2
myvar3
msg_var

V V. V.V

V V.V VYV

SDRAM
SDRAM
SDRAM
SDRAM

SDRAMO
SDRAMI1
SDRAM
SDRAM
SDRAM

Program 19. The rtdx JPEG.cmd

The View Window of the CCS project, named RTDX JPEG.pjt, is presented in Figure
144, which implements the JPEG encoder and decoder RTDX JPEG.pjt. Apart from the files
Jjpeg.c, and rtdx JPEG.cmd that were described above, it should also include the intvecs.asm
that is developed by TI. The local optimization File (-03) is selected for the jpeg.c. In
addition, the libraries rtdx./ib (or rtdxsim.lib id a simulator is used) and rts6701./ib must also
be added to the project.

Figure 148. The View Window of CCS for the RTDX JPEG.pjt

Q Files

+-[7] =EL files

- a Projects
-1 Zzj RTD¥_IPEG.pjt {(Debug)

[L7 Dependent: Projects
I:l Documents
[C3 DsP/BIOS Config
[C3 Generated Files
=3 Include
E] cex.h
% jpeg_main.h
=] rtdx.h
=] RTDX_access.h
% redzpall.h
=] scenary.h
] target.h
=1-3] Libraries
] rtd.lib
] rts6701.lib
—-£5 Source
E inbvecs,asm
#] jpeg.c
rtdx_JPEG.cmd

LabVIEW to CCS Link 165

4.2.4 Histogram Equalization

One of the most simple and effective technique for improving the quality of an image is
the histogram equalization. The purpose of this procedure is to generate an improved image,
the histogram of which will be uniformly. The histogram equalization has very good results
on images with low contrast, meaning that most luminance values are limited in a small range
between [0 255].

Histogram equalization on a grayscale image

Analytically, the result of the histogram equalization process is to expand its luminance
distribution, in order to take the whole range between [0 255] (as long as a grayscale image is

concerned) and not only a small part of it. In this case the image is visually.
The histogram equalization process, can be completed through these four steps:

(1) Histogram computation of original image

(2) Accumulative histogram computation

(3) Calculation of new, normalized luminance values
(4) Transform the initial image to the final image

Histogram equalization on a grayscale image

The simplest way of histogram equalization on a color image is to apply the histogram
equalization algorithm separately, on each one of the three R G and B components. It is
obvious that the image that will arise after the histogram equalization, in each component will
have more intense color , and consequently will be more pleasant to human. However, this
method is not supposed to be effective, because of its calculation complexity which is
increased with the size of the image, and because of the contrast growth that leads to color
contrast even in areas that has color homogeny.

It is commonly known, that before a color image is processed, many times is converted
from the RGB space to another, such as HSI, YC,C,, LAB etc. These spaces have certain
advantages over the RGB space, and this is the reason why many algorithms that deal with
color pictures, suppose that the pictures are already converted to some other space. One of
these spaces that is widely used (mainly in image encoding, as the JPEG encoding) is the
YC,C; space. The advantage of the color representation of an image in this space is that the
greatest portion of information is included in the Y component, which is called luminance. On
the other hand, the C, and C; components are call chrominance, and they contain less
information, compared to Y component. Something like that, is not really happening in the
RGB space where each channel has the same i.

With the advantage of the YC,C, space, where the greatest portion of information is
included in the Y component, the histogram equalization can be applied only on this
component and produce the same and even better results compared to RGB space. The
transformation from the RGB space to theYC,C; space, is giver from equation 3.

Y= 029R + 0587G + 0.114B
Cb= -0.169R - 0331G + 0.500B
Cr= 0500R - 0419G - 0.081B 3)

166 4. Applications

Respectively the inverse transformation, (YC,C. — RGB) is giver from equation 34:

R = 1.000Y + 1.402Cr
G = 1.000Y - 0.344Cb - 0.714Cr
B = 1000Y + 1.772Cbh 4)

Histogram equalization implementation on a color image in RGB space

Below the histeq RGB rtdx.c that implements the histogram equalization of a color
image in the RGB space, is presented.

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <rtdx.h> /* RTDX Data Read */
#include <stdio.h> /* printf */

#include "target.h" /* TARGET INITIALIZE */
#define IMAGE_SIZE 65536

#define H 256

#define W 256

#include "red.h" /* R_1d[IMAGE_SIZE] data */
#include "green.h" /* G_1d[IMAGE_SIZE] data */
#include "blue.h" /* B_1d[IMAGE_SIZE] data */

#pragma DATA_SECTION (R _1d,"R1_var")
#pragma DATA_SECTION (G_1d,"G1_var")
#pragma DATA _SECTION (B_1d,"B1_var")

#pragma DATA_SECTION (R,"R_var")
int RIIMAGE _SIZE];

#pragma DATA_SECTION (RGB_out,"RGB_out var")
unsigned char RGB_out[3*IMAGE_SIZE];

#pragma DATA_SECTION (im_1d,"im_var")
unsigned char im_1d[IMAGE_SIZE];

#pragma DATA_SECTION (message, "msg_var")
RTDX CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX MESSAGES 758
#define MAX ELEMENTS 256

unsigned char message[MAX_ELEMENTS]; /* 256 pixels each message */
int ch_count;

/* Histogram Equalization. */

LabVIEW to CCS Link 167

void hist_equalization()

{ . .
nt 1;
int hist[256];
int sum_hist[256];
int sum;

/* Clear hist[256] & sum_hist[256] */

for (i=0; i<256; i++) {
hist[i] = 0;
sum_hist[i] = 0;

}

/* Calculate image histogram */

for(i=0; i<IMAGE_SIZE; i++) {
hist[(int) im_1d[i]]++;
h

/* Calculate normalized sum of hist */
sum = 0;

for(i=0; i<256; i++) {
sum = sum + hist[i];
sum_hist[i] = sum * 255 ;

}

for(i=0; i<256; i++) {
sum_hist[i] = sum_hist[i] >> 16;

H

/* Transform Image using sum_hist as a LUT */

for(i=0; i<IMAGE_SIZE; i++) {
R[i]= sum_hist[(unsigned char)im 1d[i]];
H

}

/* Writes output image */
void write_image()
{

int 1;

for (i=0; i<IMAGE SIZE; i++) {
if (R[i]<0) R[i]=0;
if (R[i]>255) R[i]=255;
RGB out[i + ch_count*IMAGE SIZE] = (unsigned char) R[i];
}
}

/* main program */

void main ()

168

4. Applications

{
int1i, j;
ch_count=0;
/* Equalize RED channel */
for (i=0; i<IMAGE_SIZE; i++) { im_1d[i]=R_1d[i]; }
hist_equalization();
ch_count=0;
puts("\n histeq RED ok!");
write_image();
/* Equalize GREEN channel */
for (i=0; i<IMAGE_SIZE; i++) { im_1d[i] = G_1d[i]; }
hist_equalization();
ch_count=1;
puts("\n histeq GREEN ok!");
write_image();
/* Equalize BLUE channel */
for (i=0; i<IMAGE_SIZE; i++) { im_1d[i]=B_1d[i]; }
hist_equalization();
ch_count=2;
puts("\n histeq BLUE ok!");
write_image();
/* Send RED GREEN BLUE data */
TARGET _INITIALIZE(); /* Target initialization for RTDX */
RTDX enableOutput(&ochan);

for (i=0; i<(3*IMAGE_SIZE); i+=MAX_ELEMENTS) {
for (j=i; j<(i+*MAX_ELEMENTS); j++) {

message[j-i] = (unsigned char) RGB out[j];
h

/* Send the data to the host */
if ({RTDX_ write(&ochan, message, sizeof(message))) {

fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();

H

puts("\nProgram Completed!");

}

Program 20. The C code of the histeq RGB_rtdx.c

LabVIEW to CCS Link 169

In the C code of the histeq RGB rtdx.c that is presented in Program 20, the files
stdlib.h, string.h, math.h, rtdx.h, stdio.h, target.h, red.h, green.h and blue.h, are included. The
file rtdx.h contains the declarations of the functions related to the RTDX technology. The file
target.h includes the declaration of function TARGET INITIALIZE(), which initializes the
DSP and activates the interrupts so for the RTDX technology to be enabled. The header files
red.h green.h and blue.h contain the R, G and B component of the color image that the
histogram equalization will be applied on. The image to be processed has 256 x 256 pixels.

Before the declaration of the main() function the RTDC channel “ochan” is defined, that
will transfer the process result from DSP to GUI. The channel “ochan” transfers from DSP an
array of 256 numbers, that represents a line from the final image, to GUL

In addition, before the main() function the hist equalization() and write_image()
functions are defined.

In the main() function the DSP is initialized and the RTDX Technology is enabled. For
each component the functions hist _equalization() and write_image() are called. By calling the
hist_equalization() function the histogram equalization is applied on each component. By
calling the write_image() the content of each equalized component is converted into integers
between [0 255] and they are placed into the 1D-array RGBout. When the equalization
process of all three components has been completed successfully the array RGBout with
256x256x3 = 196608 elements contains all three components of the equalized image. The first
65536 elements correspond to R component, the next 65536 to G component and the last
65536 elements to B component. Afterwards, the RTDX channel output “ochan” is enabled
and the image is transferred from DSP to GUI. This transfer of the final image is carried out
gradually meaning that each time only one line of the final image is written to the RTDX
channel.

The next necessary project file is rtdx_histeqRGB.cmd and is presented in Program 21.
In this file, three memory areas of the DSK are defined, in which a name is given (i.e.
BMEM), while in the SECTIONS field every variable that is declared in the C code is
connected with the #pragma directive in one of these areas.

-c
-heap 0x1000
-stack 0x1000
-u__ vectors
-u_auto_init

_HWI Cache Control = 0;
~RTDX interrupt_mask = ~0x000001808;

MEMORY

{
VECS: 0=00000000h 1=00000200h /* interrupt vectors */
PMEM: 0=00000200h 1=0000FEQOh /* Internal RAM (L2) mem */
BMEM: 0=80000000h 1=01000000h /* CEO, SDRAM, 16 MBytes */

¥
SECTIONS
{
.intvecs > Oh
text > BMEM

rtdx_text > BMEM

170

4. Applications

far
.stack
.bss
.cinit
.pinit
.cio
.const
.data
rtdx_data
.switch
.sysmem

msg_var
im_var

R1 var

Gl _var

B1 var

R var

RGB out var

BMEM
BMEM
BMEM
BMEM
PMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM

VVVVVVVVYVVYV

BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM

VVVVYVVYV

In Figure 149, the

Program 21. The rtdx_histeqRGB.cmd

View Window of the CCS project RTDX histeqRGB.pjt, is

presented. This project implements the histograms equalization of an image in the RGB space.
Apart from the files histeq RGB rtdx.c, and rtdx_histeqRGB.cmd that were described above,
the intvecs.asm, that was developed by TI, must also be added. For the histeq RGB_rtdx.c
the local optimization File (-03) is selected. In addition in the project the libraries rtdx.lib (or

rtdxsim.lib if a simulator is used) and rzs6701./ib should be added as well.

Q Files

+-[7 GEL files

] a Projects
—| g RTDX_histeqRGB.pijt (Debug)

(2 Dependent Projects
(23 Documents
(L3 DsPBIOS Config
([Generated Files
=5 Include
] blue.h
% chx.h
=] green.h
% red.h
% red:.b
% RTD_access.h
E] rrdpoll.h
% karget.b
-1-£23) Libraries
[#] rrd.lib
[#] rtse701.lib
- a Source
3 histeq_RGE_rtdx:.c
3 inkvecs.asm
rkdx_histeqRGE. crnd

Figure 149. The View Window of CCS for the RTDX_histeqRGB.pjt

LabVIEW to CCS Link 171

Histogram equalization implementation on a color image in YCbCr space

The C code of the histeq Y rtdx.c that implements the histpgram equalization of a color
image in the YCbCr space, is presented below.

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <rtdx.h> /* RTDX Data Read */
#include <stdio.h> /* printf */

#include "target.h" /* TARGET INITIALIZE.*/
#define IMAGE_SIZE 65536

#define H 256

#define W 256

#include "red.h" /* R_1d[IMAGE_SIZE] data */
#include "green.h" /* G_1d[IMAGE_SIZE] data */
#include "blue.h" /* B_1d[IMAGE_SIZE] data */

#pragma DATA_SECTION (R _1d,"R1_var")
#pragma DATA_SECTION (G_1d,"G1_var")
#pragma DATA_SECTION (B _1d,"B1_var")
#pragma DATA_SECTION (Y, "Y_var")

#pragma DATA _SECTION (Cb,"Cb_var")
#pragma DATA SECTION (Cr,"Cr_var")

#pragma DATA_SECTION (R, "R_var")

#pragma DATA_SECTION (G, "G_var")

#pragma DATA _SECTION (B, "B_var")

#pragma DATA_SECTION (RGB_out,"RGB_var")

unsigned char RGB_out[3*IMAGE_SIZE];
int Y[IMAGE_ SIZE];

int Cb[IMAGE_SIZE];

int Cr[IMAGE_SIZE];

int RIIMAGE_SIZE];

int G[IMAGE_SIZE];

int BIMAGE_SIZE];

#pragma DATA_SECTION (message, "msg_var")
RTDX CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX MESSAGES 256
#define MAX ELEMENTS 256

unsigned char message[MAX_ELEMENTS]; /* 256 pixels each message */

/* RGB to YCbCr color conversion */
void RGB to YCbCr()

{

nt 1;

172

4. Applications

for(i=0; i<IMAGE_SIZE; i++) {

/* weights ->(weights *1000) */
Y[i] = 299*R_1d[i] + 587*G_1d[i] + 114*B_1d[i];
Cb[i] =-169*R_1d[i] - 331*G_1d[i] + 500*B_1d[i];
Cr[i] = 500*R _1d[i] - 419*G_1d[i] - 81*B_1d[i];

H

/* devide with 1024=2"10 */
for(i=0; i<IMAGE_SIZE; i++) {
Y[i] = (int) (Y[i]/1000);
Cb[i] = (int) (Cb[i]/1000);
Cr[i] = (int) (Cr[i]/1000);
H
b

/* Histogram Equalization. */
void hist_equalization()

{ . .
inti;
int hist[256];
int sum_hist[256];
int sum;

/* Clear hist[256] & sum_hist[256] */

for (i=0; 1<256; i++) {
hist[i] = 0;
sum_hist[i] = 0;

}

/* Calculate image histogram */

for(i=0; i<IMAGE_SIZE; i++) {
hist[(int) Y[i]]++;
}

/* Calculate normalized sum of hist */
sum = 0;

for(i=0; i<256; i++) {
sum = sum + hist[i];
sum_hist[i] = sum * 255 ;

H

for(i=0; i<256; i++) {
sum_hist[i] = sum_hist[i] >> 16;

}

/* Transform Image using sum_hist as a LUT */

for(i=0; i<IMAGE_SIZE; i++) {
Y[i]= sum_hist[(unsigned char)Y[i]];

LabVIEW to CCS Link

173

H
}

/* YCbCr to RGB color conversion */
void YCbCr to RGB()
{

nt 1;
for(i=0; i<IMAGE_SIZE; i++) {

R[i] = 10000*Y[i] - 9*Cbl[i] + 14017*Cr[i];
Gli] = 10000 Y[i] - 3437*Cb[i] - 7142*Cri];
B[i] = 10000*YT[i] + 17722*Cb[i] + 10*Ct[i];
}

for(i=0; i<IMAGE_SIZE; i++) {
R[i] = (int) (R[i]/10000);
Gl[i] = (int) (G[i]/10000);
B[i] = (int) (B[i]/10000);

/* Writes output image */
void write_image()

{

nt 1;

for (i=0; i<IMAGE_SIZE; i++) {
if (R[i]<0) R[i]=0;
if (G[i]<0) G[i]=0;
if (B[i]<0) BJ[i]=0;
if (R[1]>255) R[i]=255;
if (G[i]>255) G[i]=255;
if (B[i]>255) B[i]=255;

RGB_out[i] = (unsigned char) R[i];

RGB_out[i+IMAGE_SIZE] = (unsigned char) G[i];
RGB out[i+2*IMAGE_SIZE] = (unsigned char) BJi]

}
}

/* main program */
void main ()

{

int1i, j;

RGB_to_YCbCr();
hist_equalization();

puts("\n Equalization ok!");

YCbCr_to RGB();
write_image();

b

174 4. Applications

/* Send RED GREEN BLUE data */
TARGET _INITIALIZE(); /* Target initialization for RTDX */
RTDX enableOutput(&ochan);

for (i=0; i<(3*IMAGE_SIZE); i+=MAX ELEMENTS) {
for (j=1; j<(i+tMAX_ELEMENTYS); j++) {
message[j-i] = (unsigned char) RGB_out[j];
}

/* Send the data to the host */
if {RTDX_ write(&ochan, message, sizeof(message))) {
fprintf(stderr, "\nError: RTDX write() failed!\n");
abort();
h
}

puts("\nProgram Completed!");
}

Program 22. The C code of the histeq_ Y _rtdx.c

In the C code of the histeq Y rtdx.c that is resented in Program 22, the files stdlib.h,
string.h, math.h, rtdx.h, stdio.h, target.h, red.h, green.h and blue.h are included. The rtdx.h
contains the declarations of the functions related to the RTDX technology. The header file
target.h includes the declaration of function TARGET INITIALIZE(), which initializes the
DSP and activates the interrupts so for the RTDX technology to be enabled. The header files
red.h green.h and blue.h contain the R, G and B component of the color image that the
histogram equalization will be applied on. The image to be processed has 256 x 256 pixels.

Before the declaration of the main() function the RTDC channel “ochan” is defined, that
will transfer the process result from DSP to GUI. The channel “ochan” transfers from DSP an
array of 256 numbers, that represents a line from the final image, to GUIL

In addition, before the main() the functions RGB to YCbCR(), hist equalization(),
YCbCr to RGB() and write_image() are described.

In the main() function, the image is convertred from the RGB to the YCbCr space using

the function RGB _to YCbhCR(). With the hist equalization() function the equalization of the
Y component (luminance) is achieved. Then, by calling YCbhCr to RGB() function the
equalized image is coverted to the RGB space. By calling the write image() the content of
each equalized component is converted into integers between [0 255] and they are placed into
the 1D-array RGBout. When the equalization process of all three components has been
completed successfully the array RGBout with 256x256x3 = 196608 elements contains all
three components of the equalized image. The first 65536 elements correspond to R
component, the next 65536 to G component and the last 65536 elements to B component.
Afterwards, the RTDX channel output “ochan” is enabled and the image is transferred from
DSP to GUI. This transfer of the final image is carried out gradually meaning that each time
only one line of the final image is written to the RTDX channel.
The next necessary project file is rtdx_histeqY.cmd and is presented in Program 21. In this
file, three memory areas of the DSK are defined, in which a name is given (f.e. BMEM),
while in the SECTIONS field every variable that is declared in the C code is connected with
the #pragma directive in one of these areas.

LabVIEW to CCS Link

175

-C

-heap 0x1000
-stack 0x1000

-u__ vectors

-u_auto_init

HWI Cache Control = 0;

_RTDX interrupt_mask = ~0x000001808;

MEMORY
{
VECS:
PMEM:

}

SECTIONS

{ .
.ntvecs
text
rtdx_text
far
.stack
.bss
.cinit
.pinit
.cio
.const
.data
rtdx_data
.switch
.sysmem
msg_var
im_var
R1 var
Gl var
Bl var
Y var
Cb_var
Cr_var
R var
G _var
B var
RGB var

0=00000000h
0=00000200h
BMEM: 0=80000000h

VVVVVVVVVVVVVVVVVVVVVVVYVYVYV

Oh

BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
PMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM
BMEM

1=00000200h /* interrupt vectors */
1=0000FEOOh /* Internal RAM (L2) mem */
1=01000000h /* CEO, SDRAM, 16 MBytes */

Program 22. The rtdx_histeqY.cmd

In Figure 150, the View Window of the CCS project RTDX histeqY is presented. This
project implements the histograms equalization of an image in the YCbCr space. Apart from
the files histeq Y rtdx.c, and rtdx_histeqY.cmd that were described above, the intvecs.asm,
which was developed by TI, must also be added. For the histeq Y rtdx.c the local

176 4. Applications

optimization File (-03) is selected. In addition in the project the libraries rtdx.lib (or
rtdxsim.lib if a simulator is used) and rzs6701./ib should be added as well.

Q Files

+- [GEL Files

-3

- RTDZX_histeqY.pjt (Debug)
(L) Dependent Projects
[:l Diocurments
(L3 DsPBIOS Config
([Generated Files
-5 Include

E] blue.h

E] cexh

% green.h

% red.h

% rkd:.b

E] RTD¥_access.h

% rtdzpoll.b

% target.h

-1-£5) Libraries

[#] rrdsim.lin

] rtse701. b

--£5) Source

3 histeq_¥_rtdx.c

ﬁ inkvecs.asm

rkdx_histeqy.crnd

Figure 150. The View Window of CCS for RTDX histeqY .pjt

4.2.5 Implementing the VI to control the application

The VI that will be presented below is ImageGUI.v. It controls and communicate with
CCS and consequently the DSP of DSKC6713. With ImageGUI.vi the user can choose the
image that will be loaded to the DSP as well as the processing algorithm that will be applied
on this image. This VI shows the selected image before and after the processing.

The ImageGUL.vi front panel

The front panel of the ImageGui.vi that is presented in Figure 151 provides to indicators
named “Image in” and Image Out” that represent te image to be loaded and processed to
DSP and the processing result image. The control “Image Type” provides two radio buttons,
the “Grayscale” and the “Color (RGB)” with which the user can define the type of the image
that will be loaded to DSP. With the control “Algorithm Selection”, that has the sates shown
in Table 13, the user can select the image to be processed. As Table 13 shows, some states of
the control “Algorithm Selection” correspond to color images and some others to grayscale
images. Therefore, the states of this control that do not correspond to the value of the control
“Image Type” are disabled and presented with a light grey color for user’s convenience. In
front panel of Figure 151 the active states of the control “Algorithm Selection” are shown,
when from the control “Image Type” has been selected that the image to be used is actually a
grayscale image.

LabVIEW to CCS Link 177
Value State Description
0 Algorithm Selection Nothing happen
1 Sobel Edge Detection (Gray) The edges of a grayscale image are detected .
) Histogram Equalization RGB (Color) The hlstogram of a color image in the RGB space is
equalized.
3 Histogram Equalization Y (Color) The hlstogram of a color image in the YCbCr space is
equalized.
The direct DCT and the IDCT is applied on a grayscale
4 DCT/IDCT slow (Gray) image by using the 1D-DCT .
The direct DCT and the IDCT is applied on a grayscale
> DCT/IDCT fast (Gray) image by using the McGovern algorithm.
A grayscale image is encoded and decoded according to
6 JPEG encoder/decoder (Gray) the IPEG standard.

Table 13. The states of the control input “Algorithm Selection”

el Image GUI. i

Image_in Image_0Out
Image Type \AIgurithm Selection Stop
Ggrays,:ab ?Jnlgnrithm Selection STOR I
Color(RGE)

)

Figure 151. The front panel of ImageCUIL.vi

When the control “Algorithm Selection” is in the state of Algorithm Selection, then the
Vlis in standby mode. If in this moment the user desires to terminate its function, the “Stop”
button will be pressed. I any state of the control “Algorithm Selection” is selected except for
the Algorithm Selection then the VI will exit the standby mode and a dialog window will
appear automatically, being the Windows explorer, asking to select and load the desired
image. After that the image will appear in the indicator “Image in”. When the DSP
successfully completes the process define by the control “Algorithm Selection” the final,
processed image will appear in the “Image Out”.

The block diagram panel of the ImageGUI.vi

In Figure 152, the block diagram of ImageGUI.vi is shown, which consists of six phases
that will be described thoroughly below, so the function of this VI to be understood.

178 4. Applications

- . AEPad
N e, = e
Tl P
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Figure 152. The block diagram of ImageGUI.vi

The first phase of the block diagram is shown in Figure 153 and it implements the
standby mode of the VI, since it runs constantly till the button “Stop” is pushed or the state of
the control “Algorithm Selection” is changed. Firstly the Not Equal To 0?.vi is selected if the
value of the control “Algorithm Selection” is different than 0 (which means that the state
Algorithm Selection is not selected). If the output of the Not Equal To 0?.vi is False then the
value of the control “Algorithm Selection” is 0. The “Stop” button and the output of Not
Equal To 0?.vi are connected as inputs on the Compound Arithmetic.vi (that is defined to
execute the OR operation). Therefore, the output of Compound Arithmetic.vi that is
connected to the control input of the While structure, terminates the execution of the first
phase of the block diagram when the “Stop” button is pushed or the value of the control
“Algorithm Selection” is changed (different than 0).

(Zornpound Arithmekic

lgarithm Selection ok Equal To 07 lalqarithm Selection ok Equal To 07
- i 3 i

- {Enuy - {Enuy

(Zornpound Arithmekic

Fd Fd
Ak Ak

Algorithm Selection Algorithm Selection
mage Tvpe 71 E— 7] mage Tvpe 71 E— 7]
PDisabledItems[] PDisabledItems[]
o o
3= =
(a) (b)

Figure 153. The first phase of the block diagram of ImageGUI.vi
(a) for a color image (b) foe a grayscale image

In the first phase of the block diagram, the states of the control “Algorithm Selection”
that are not correspond to the value of the control “Image Type”, are disabled. The
deactivation of the control “Algorithm Selection” states is achieved with the DisabledItems][]
property. This property takes as input an array that shows the values of the states to be
disabled. Through the Case structure the input of the DisabledItems[] property is altered
according to the value of the control “Image Type” that is connected to the control input of
the Case structure. Therefore, when a color image is selected by the control “Image Type”, the
states of the control “Algorithm Selection” with values 1, 4, 5 and 6, will be disabled. In the

LabVIEW to CCS Link 179

same way when the user selects a grayscale image, the states of the control “Algorithm
Selection” with values 2, and 3, will be disabled.

The phases 2, 3, 4, 5, and 6 are the False “case” of a Case structure that is controlled by
the “Stop” button. The True “case” of this structure is empty, since when the “Stop” button is
pushed all other phases are bypassed and the function of the VI is terminated.

In Figure 154, the second phase of the ImageGUI.vi has been completed, in which the
path of the CCS project to be loaded, is defined. In this phase the reading process, the data
collection and the representation of the image selected by the user, through the respective

dialog window, are realized.
Corer Vs Pa] 2t ;ath Build Path]|
T

- * T |

E™1a] "algotithm Selection”, Defaulk

J
s

=

Read BMP and get data,vi

Image_in
@ Picture

Ernpky Pickure

0o Irnage_Out

Figure 154. The second phase of the block diagram of ImageGeUI.vi

The ImageGUI.vi should be saved in the directory that contains the folders with the
CCS projects’ files that execute the respective process on the image. The output of the Current
VI’s Path that indicates the path where the VI is saved, is connected to the input of Strip
Path.vi that cuts off the last part of the path. If the path of the VI is C:\dsp projects\
image projects\ImageGUI.vi then the output of the Strip Path.vi is C:\dsp projects\
image projects. The output of Strip Path.vi is connected to input “base path” of Build Path.vi
while in input “ name or relative path” the output of Case structure. The Case structure alters
the input “ name or relative path” of Build Path.vi according to the CCS project that has to be
loaded according to the state of the control “Algorithm Selection. The cases of the Case
structure are presented in Figure 155. Therefore, if the state of the control “Algorithm
Selection” is Sobel Edge Detection (Gray) then the input “ name or relative path” of the Build
Path.vi will take the RTDX Sobel edges\ RTDX Sobel edges.pjt.so the output of the Build
Path will be the CCS project path for the edge detection. In this way the path of the CCS
project that will implement the processing algorithm indicated by the control “Algorithm
Selection”, 1s created

180 4. Applications

["algorithm Selection”, Default e] "Hiskogram Equalization REE (Color)” =k

[RTD% histeqrEEIRTDY histeqRGE. pit

22

BRTD® Sobel edges\RTDX Sobel edges.pit

["Sobel Edge Deteckion (Gray)" ["Hiskogram Equalization ¥ (Colar)" -

IRTDx histeqriRTON histeqy.pit

["DET/IDET slow (Gray" . Ta] "DCT/IDCT Fast {Grav)” -

IRTD_DCT_SlowRTDE_DCT Slaw, pit IRTOE DCT _FastiRTOE DCT_Fast.pit

["IPEG encoder/decoder (Gray)”

IrT0% JPEG\RTDY IPES.pit

Figure 155. The cases of the Case structure ijn the second phase of the block diagram of ImageGUI.vi

In the second phase of the ImageGUI.vi the Read BMP and get data.vi is executed. It
reads a BMP image, shows it and collects its data in order to create three 1-D arrays that will
represent the three components of a color image. In the case of a grayscale image then the
three arrays that will be created by the Read BMP and get data.vi will contain the luminance
values of this specific image. At the ImageGULvi, in input “Original Image” of the Read
BMP and get data.vi a reference to the control “Image in” is connected while in input “Image
Type” the control “Image Type” is connected. In outputs “Image Data 17, “Image Data 2 and
Image Data 3” contain the data of the read image. In output “Original Image 2” the indicator
“Image in” is connected in order to represent the image just read. The output “cancelled”
indicates that whether the “Cancel” button is pushed in the dialog window that pops up for the
image selection.

In Figure 156 the block diagram of the Read BMP and get data.vi, is shown where the
input “Path” is checked foe being empty or not containing any paths. If it is empty, like the
case where the Read BMP and get data.vi is called by the ImageGUI.vi, the True case of the
structure “Case Structure 1” will be executed. In this point the File Dialog.vi is executed that
will show the dialog window for the image selection. The output “path” of File Dialog.vi will
include the path of the chosen image. The output “cancelled” indicates that whether the
“Cancel” button is pushed in the dialog window that pops up for the image selection and is
connected to the output “cancelled” of the Read BMP and get data.vi and with the control
case of the structure “Case Structure 2”. If in the dialog window the “Cancel” button is
pushed by the user then the True case of the structure “Case Structure 2” will be selected ,
which is empty and the function of the Read BMP and get data.vi will be terminated. In the
False case of the structure “Case Structure 2 the output “path” of File Dialog.vi will be
connected to the input “Path to BMP File” of Read BMP File.vi which is going to read the
BMP image. The output cluster “Image data” of the Read BMP File.vi is connected to the
corresponding input of the Draw Flattened Pixmap.vi. The Draw Flattened Pixmap.vi will
represent the image through the indicator “Original Image 2”.

In the control case of the structure “Case Structure 3” the input “Image Type” is
connected. Therefore, the case “Color(RGB)” of the structure “Case Structure 3” is executed
when a color image is used. In this point, the output “image” of the output cluster “Image
data” of the Read BMP File.vi is an array with 196608 elements (256x256x3 = 196608 for a
256x256 image) and contains the values f the R, G and B components of the image. In this
array, the first three elements correspond to the R, G and B components of the first pixel, the

LabVIEW to CCS Link 181

next three elements correspond to the three components of the second pixel etc. In the case of
“Color(RGB)” of the structure “Case Structure 3” the separation of the three components of
the image must be done. For this, a For loop is used that is repeated 65536 times (for a 256 x
256 image) and takes as input the output “image” of the output cluster “Image data” in the
Read BMP File.vi. With the help of the Index.vi and the pattern presented in the block
diagram of the Read BMP and get data.vi this separation of the three image components is
achieved. The R, G and B components after the separation will be three 1-D arrays consisting
of 65536 elements (for a 256x256 image) that are included in the outputs “Image Data 17,
“Image Data 2 and “Image Data 3”.

Empty Path Constant
5]

ot & Path Constant ;

Case Structure
1 [False ~}]

i

riginal Image 2
(o]

Riead BMP File, i
BHF
-

Draw Flattened Pixmap,vi

{ [Unbundle By Mame

i image bvpe

image depth
irnage

mask,
colars
Rectangle

Bt
| Rectangle. left
iid Rectangle kop

Rectangle.right
Rectangle bottom

T

Elc] LPropert Node

a= Fid
%:: PDrawhreasize

Figure 156. The block diagram of the Read BMP and get data.vi

In case where a grayscale image is used, the case “Grayscale” of the structure “Case
Structure 3” is executed in which the output “image” of the output cluster “Image data” of the
Read BMP File.vi, which is an array with 65536 elements (256x256 = 65536 for a 256x256
image) andcontains the luminance value of each image pixel, is connected to the outputs
“Image Data 17, “Image Data 2” and “Image Data 3” of Read BMP and get data.vi.

The input “Original Image” of the Read BMP and get data.vi that contains reference to
the indicator “Image in” defines the element, which the “DrawAreaSize” property is
addressed to. The “DrawAreaSize” property addresses only to images controls and indicators
and modifies their size according to the value of the cluster connected o this property. In this
specific case, the outputs “Rectangle.right” and “Rectangle.left” are grouped (with the
Bundle.vi) and connect to the “DrawAreaSize” property. In this way is assured that the image
indicator (specifically the control “Image in”) will be of the same size as the image that will
represent.

The second phase of the block diagram of ImageGUI.vi is completed with the indicator
“Image Out” to be cleared. This is achieved by connecting the constant “Empty Picture” to the
local variable of the indicator “Image Out”.

The phases 3, 4, 5, and 6 comprise the False case of a Case structure that I scontrolled
by the output “cancelled” of the Read BMP and get data.vi. In the True case of this structure
that is executed only when the “Cancel” button, in the dialog window for the image selection
is pressed, the reset of the control “Algorithm Selection” to the state Algorithm Selection is

182 4. Applications

carried out. The reset of the control “Algorithm Selection” is achieved by connection the
constant “Algorithm Selection” to the local variable of this specific control.

As long as the “Cancel” button, in the dialog window for the image selection, is not
pressed and the second phase of the block diagram of ImageGUI.vi is completed, the False
case of the above structure that includes the phases 3, 4, 5 and 6, will be executed.

In the third phase of the block diagram of ImageGUI.vi that is presented in Figure 157,
the reset of the control “Algorithm Selection” to the state Algorithm Selection is carried out
and the creation of three header files (Red.h, Green.h and Blue.h) that contain the three
components of a color image or the creation of a single header file (scenary.h) that contain the
luminance values of a grayscale image according to the value of control “Image Type” is
taking place.

Pl "Color{RGE)" pda T["Grayscale”, Default v

Euild Path

;:Q'E
L Iscenarx.hh@ﬂ." imag =]

Euild Path
| b
Elue.h Eﬁ." B 1d

Strip Path Euild Path Strip Path Euild Path
}' o
il == ; Pk

| &lgorithm Selection v|—||Algorithm Selection| |+ Blgorichr Selection '|_| Algarithm Selection]|
(@) (b)

Figure 157. The third phase of the block diagram of ImageGUI.vi
(a) for a color image (b) for a grayscale image

The reset of the control “Algorithm Selection” is achieved by connecting the constant
“Algorithm Selection” to the local variable of this specific control.

When he use of a color image is selected, then the case “Color(RGB) of the Case
structure in the third phase of the block diagram, is executed. In this case three header files
must be created the Red.h, Green.h and Blue.h, which they contain the three arrays R 1d,
G 1d and B_1d respectively. These are unsigned short arrays and they include the
components R, G and B of the image. These files should be created in order to load the image
to be processed on the DSP during the building process of the respective CCS project. The
files Red.h, Green.h and Blue.h must be saved in the same directory as the respective project.

The path where the header files Red.h, Green.h and Blue.h will be saved is defined by
the CCS project path in the first phase. The path of the CCS project acts as an input to the
Strip Path.vi and the last part of it (name of the project) is cut off. The output of Strip Path.vi
is connected to the input “base path” of the Build Path.vi while to the input “name or relative
path” the string constant is connected, which contains the name of the file to be created. In
this way the path of the Red.h, Green.h and Blue.h is defined. The Write data to file.vi, that
creates and saves these files, takes as input the path where the respective file is saved, the
name of the array that will contain this file and array’s data. In order to create the header file
Red.h, to input “File Path” of Write to data file.vi the output of Build Path.vi that creates the
path of this file, is connected. To input “Array Name” of Write to data file.vi the string

LabVIEW to CCS Link 183

constant, that contains the name of the array such as R 1d, is connected, while the input
“Data” is connected to output “Image Data 1” of the Read BMP and get data.vi, which was
described in the second phase, and contains the R component of the image. Th esam eprocess
is followed for the creation of the Green.h and Blue.h header files.

When the use of a grayscale image is selected, then the case “Grayscale” of the Case
structure is executed. In this case, following the process that creates the Red.h, the heder file
scenary.h is created, which contains the array image in. This is a unsigned short array and
contains the value of luminance for each pixel of the image. This file must be created in order
to load the image to be processed on the DSP during the building process of the respective
CCS project. The file scenary.h is saved in the same directory as the respective project.

Fil= Path
Deleke
Bl Parh] [T
= #
.ﬁ.rraz Mame
labc
[=3d
[] I[IMF'.GE_SIZE] = . SEn:atenate Strings| { [write Characters To File: vi
m e -] Y "Eabe..
i|[1z= I £+
; ERE RCHE
] array To Spreadsheet String]

Figure 158. The block diagram of Write data to file.vi

The Write data to file.vi is used to create the Red.h, Green.h, Blue.h and scenary.h , the
block diagram of which is presented in Figure 158. The input “File Path” contains the path
and the name of the file to be created. In the folder where the project is, a file with name like
the one indicated by the input “File Path” may already exist, so this is why the input “File
Path” is connected to Delete.vi in order to delete this file. The output “dup path” of Delete.vi
contains exactly the same path and name of the file indicated by the input “File Path” and is
connected to input “file path” of Write Characters to File.vi in order to create a new file in the
same path with the same name. The input “Data” contains the image data that will be saved to
the new file. The input “Data” is connected to input “array” of the Array To Spreadsheet
String.vi in order for the array to be converted to a string, where an element will be separated
by the other with a comma “,”. The input “Array Name” contains the name of the array that
will be declared to the file that is created by the Write data to file.vi. The content of this file
is a string generated by the Concatenate Strings.vi that takes as inputs three string constants,
the input “Array Name” and the output of Array To Spreadsheet String.vi. If the input “Array
Name” contains the name R _1d and the input “Data” contains the elements 1, 2, 3, and 4
then the output of Concatenate Strings.vi will be :

unsigned char R _1d[IMAGE SIZE] = {
1,2,3,4
¥

The output of Concatenate Strings.vi is connected to the input “character string” of Write
Characters to File.vi in order for the data to be written to the new file indicated by the input
“File Path” of Write data to file.vi.

The third phase of block diagram of ImageGUI.vi is completed with the presentation
and description of the function of Write data to file.vi .

184 4. Applications
In the fourth phase of the block diagram of ImageGUI.vi that is presented in Figure 159,

CCS is setting up to use the DSKC6713 and to be controlled in order to initiate the image
processing. This phase is completed when the DSP finishes the process of the image.

Path To String
%y

e |

Tpen o 1o
o0ject [ei3)
[(CC5_Setup_Open.vi] [CC5_Setup_Clear.vi] [CC5 Setup_add_Board.vi] [CC5 Setup_Save.vi] [0C5 Setup_Close.vi]

[RChCCstudin va, tldriversimportidske713.cos |

Figure 159. The forth phase of the block diagram of ImageGUI.vi

The CCS _ Setup Open.vi loads the CCStudio Setup.The CCS Setup Clear.vi all
previous setting of the CCStudio Setup. The CCS_Setup Add Board.vi loads to CCStudio
Setup the DSKC6713 drivers according to the path indicated by the constant “Path”, since it is
connected to the input “Driver Path” of subVI. The CCS Setup Save.vi saves all selected
settings and the CCS__ Setup Close.vi closes the CCStudio Setup.vi. In this point the CCS has
been set for the use of the DSKC6713.

The CCS Open.vi loads the CCS and the CCS_Open_Project.vi load the CCS project
according to the path indicated by the input “Project Path In”. The path that the input “Project
Path In” of the CCS_Open_Project.vi contains, was defined in the second phase of the block
diagram of ImageGUI.vi and converted to a string by using the Path To String.vi. The
CCS_Build.vi commands the CCS to build the loaded project in order to generate the
executable fle. When the building process is completed, the CCS_Build Result.vi outputs the
building result to the indicator “Build Result”. The CCS_Connect.vi commands the CCS to
connect to the DSKC6713, while the CCS _DSP_Reset.vi resets the board. As long as no
errors have occurred during the building process the CCS_Download.vi commands the CCS
to download the executable to the DSP that also contains the mage to be processed. The
project uses the RTDX technology, so the CCS_ RTDX Enable.vi is used that sets the RTDX
parameters and enables the RTDX technology. In this specific case, the default settings of the
RTDX technology are used. The CCS_Run.vi, commands the DSP to initiate the execution of
the program. Inside the While structure the Is DSP_Running.vi has been placed that controls
if the DSP is executing the program. The output “Running” of Is DSP_Running.vi take the
False value when the DSP stops the execution of the program which means that the process is
complete. By using the Wait.vi that is connected to an arithmetic constant 200, the execution
of the While structure every 200 msec, is achieved. The While structure stops to execute when
the output “Running” of Is DSP_Running.vi takes the False value. This is when the furth
phase of the block diagram of ImageGUI.vi is completed.

In the fifth phase of the block diagram of ImageGUI.vi the image is being read, which is
the DSP process result, through the RTDX channel “ochan”. The fifth phase is actually
consisting of a Case structure that is controlled by the control “Image Type”.

When the use of a color image is selected the case Color(RGB) of the Case structure is
executed, that is presented in Figure 160.

LabVIEW to CCS Link 185

1| "ColoriRGE)" p

Array Subset

‘ ReshaEe Arrag
i i { S
ot

Inidex Arra
a

-t

Multiali

x

Array Subset

E-m

Figure 160. The fifth phase of the block diagram of ImageGUI.vi for a color image

The transfer of a color image is executed by gradually writing data to the respective
RTDX channel. In fact, an array with 256 elements is written each time to the RTDX channel,
so in order to complete the transfer of a color image the DSP has made 256 x 3 = 768 writes.
Therefore, the RTDX channel contains 768 messages when the process of a color image is
completed. In order to retrieve this color image 768 readings has to be made from the RTDX
channel “ochan”. This is achieved with a For loop that contains the RTDX Read.vi, in which
the RTDX Read SA UII is selected because the content of the RTDX channel is arrays with
1-byte unsigned integers. To the input “Channel” of RTDX Read.vi a string constant is
connected that contains the name of the RTDX channel from which the reading of the image
is going to be made. The output of the For loop is a 768x256 array that with the Reshape
Array.vi is converted to an 1-D array with 768x256=196608 elements. The first 65536
elements of the array comprise the R component of the image, the next 65536 elements
comprise the G component and the final 65536 elements the B component. The separation of
the image’s components is achieved by the use of the Array Subset.vi and with the pattern
described in Figure 160. The outputs of the Array Subset.vi is the outputs of the Case
structure as well and contain the components of the image retreived.

When the use of a grayscale image is selecte, the case Grayscale of Case structure is
executed, that is presented in Figure 161.

T "Grayscale”, Default ~]

=
RTDY_Read_SA_UIL *

m eshape Arra
[7

=

‘I =2

——

Array Size| Index Arra
B = Multiply
at o 3

-

Figure 161. The fifth phase of the ImageGUI.vi block diagram for a grayscale image

186 4. Applications

The transfer of a color image is executed by gradually writing data to the respective
RTDX channel. In fact, an array with 256 elements is written each time to the RTDX channel,
so in order to complete the transfer of a color image the DSP has made 256 x 3 = 768 writes.
Therefore, the RTDX channel contains 768 messages when the process of a color image is
completed. In order to retrieve this color image 768 readings has to be made from the RTDX
channel “ochan”. This is achieved with a For loop that contains the RTDX Read.vi, in which
the RTDX Read SA UII is selected because the content of the RTDX channel is arrays with
1-byte unsigned integers. To the input “Channel” of RTDX Read.vi a string constant is
connected that contains the name of the RTDX channel from which the reading of the image
is going to be made. The output of the For loop is a 768x256 array that with the Reshape
Array.vi is converted to an 1-D array with 768x256=196608 elements that contain the
luminance value of each pixel in the retrieved image. The outputs of the Array Subset.vi is
connected to the three data outputs of the Case structure. In this point the fifth phase of the
block diagram of ImageGUI.vi is completed.

In the sixth phase of the block diagram of ImageGUI.vi that is presented in Figure 162 ,
the termination of the CCS and the representation of the retrieved image is realized.

CCS _DSP_Halt.wi] [CC5 _RTDE Disable.vi] [CCS Disconnect.wi] [CC5 Close_Project.vi] [CC5_Close.vi

mage Out

R.GEZpickure, vi

Draw Area Size

Figure 162. The sixth phase of the block diagram of ImageGUI.vi

The CCS_DSP_Halt.vi commands the DSP through CCS to stop the termination of the
program. The use of CCS_DSP_Halt.vi in this specific case is since if no error has occurred
or if no relative command has been given manually, the DSP will have already terminate the
program’s execution. The CCS RTDX Disable.vi disables the RTDX technology. The
CCS _Close Project.vi closes the project, opened by CCS and the CCS_Close.vi closes the
CCS

With RGB2picture.vi the retrieved image from the DSP is represented to control “Image
Out”. The inputs “Red Channel”, “Green Channel” and “Blue Channel” of the
RGB2picture.vi are connected to the respective data outputs of Case structure in the fifth
phase of the block diagram. To input “reference” a reference to the indicator “Image Out” is
connected, while to the input cluster “Draw Area Size” is connected a constant cluster that
defines the image size which in this case is 256x256. The indicator “Image Out” that
represents the retrieved image is connected to the output “Image Out” of RGB2picture.vi.

LabVIEW to CCS Link 187

Flatten RGE datal Lnflatten RGE datal

U!!

~0

Craw Unflattened Pixmap. vi

-]
B
IE

Draw True-Colar Pixmap =

[=]
5

- PO auwAreasize

Figure 163. The block diagram of RGB2picture.vi

In Figure 163 the block diagram of the RGB2picture.vi is presented where the inputs
“Red Channel”, “Green Channel” and “Blue Channel” contain the R, G and B components of
a color image as 1-D arrays with 1-byte unsigned integers. By using the Join Numbers.vi the
arrays that are included to inputs “Red Channel”, “Green Channel” and “Blue Channel” are
converted to a single array that has the same number of elements with them. The new array is
connected to output “Flatten RGB data” and its elements are 4-bytes integers. The most
significant byte of each element in this array has a zero value, the second byte of each element
in this array has the value of the respective element in the R component, the third byte of each
element in this array has the value of the respective element in the G component and the
fourth byte of each element in this array has the value of the respective element in the B
component. By using the Reshape Array.vi the above array is converted to an array with
dimension defined by the input “Draw Area Size” meaning the dimensions of the image,
which in this case are 256x256. The output of the Reshape Array is connected to the output
“Unflatten RGB data” and to the input “Data (RGB format)” of Draw Unflattened Pixmap.vi.
The Draw Unflattened Pixmap.vi is a polymorphic VI in which the Draw True-Color Pixmap
is selected and to the output “new picture” the image, the data of which are included in input
“Data (RGB format)”. The output “new picture” of Draw Unflattened Pixmap.vi is connected
to the output “Image Out” of RGB2picture.vi

The input “reference” of RGB2picture.vi that contains a reference to the indicator
“Image Out” defines the element that the “DrawAreaSize” property refers to. . The
“DrawAreaSize” property addresses only to images controls and indicators and modifies their
size according to the value of the cluster connected o this property. In this specific case, the
input cluster “Draw Area Size” that includes the dimensions of the image is connected to the
“DrawAreaSize” property. In this way is assured that the image indicator (specifically the
control “Image out”) will be of the same size as the image that will represent.

The RGB2picture.vi can represent apart from color images and grayscale images as
well. The only think necessary is to connect the single array that includes information about
the image, to inputs “Red Channel”, “Green Channel” and “Blue Channel” at the same time.

In this point the description of the sixth phase and of the block diagram of the Image
GUILvi is completed.

188 4. Applications

4.2.6 Results — Conclusions

In Figure 164, the front panel of the ImageGUI.vi is shown, after the edge detection on
the image cameraman.bmp is completed, which is represented to indicator “Image in”. The
process result is shown in the image represented by the indicator “Image Out”.

B ImageGULL vi X

Image_in Image_DOuk

Image Type \Algurithm Selection Stop

tayscale ngobel Edge Detection (Graw) STOPR I
Color{REE)

Figure 164. Thefront panel of ImageGUIL.vi

In Figure 165 the front panel of the ImageGUI.vi is shown, after the direct DCT and the
IDCT is applied on the image peppers.bmp, which is represented to indicator “Image in”. The
process result is shown in the image represented by the indicator “Image Out”.

i

Image_in Image_0Ouk

Image Type 1AIgurithm Selection Stop

olor(RGE)

rayscale aDCTJ’IDCT slowe {Gray) STOP l
iZ

Figure 165. The front panel of ImageGUIL.vi

LabVIEW to CCS Link 189

In Figure 16 the front panel of ImageGUI.vi is shown, after the McGovern algorithm of
the direct DCT and the IDCT is applied on the image peppers.bmp, which is represented to
indicator “Image in”. The process result is shown in the image represented by the indicator
“Image Out”.

B ImageGULL vi

Image_in Image_DOuk

Image Type Algorithm Selection Stop

rayscale g DCT/IDCT Fast (Gray) STOP I
Color{REE)

Figure 166. The front panel of ImageGUI.vi

In Figure 167 the front panel of ImageGUI.vi is shown, after the image boat.bmp is
encoded and decoded according to the JPEG standard, which is represented to indicator

“Image in”. The process result is shown in the image represented by the indicator “Image
Out”.

B ImageGUL i

Image_in Image_0Ouk

Image Type Algorithm Selection Stop

rayscale EHJPEG encoder/decoder (Gray) STOR I
Color{RGE)

Figure 167. The front panel of ImageGUIL.vi

190 4. Applications

In Figure 168, the front panel of the ImageGUI.vi is shown, after the histogram
equalization of the image house 256rgb.bmp in the RGB space. The initial image is
represented to indicator “Image in”. The process result is shown in the image represented by

the indicator “Image Out”.

B ImageGULL vi

Figure 168. The front panel of ImageGUI.vi

In Figurel69, the front panel of the ImageGUILvi is shown, after the histogram
equalization of the image house 256rgb.bmp in the YCbCr space. The initial image is
represented to indicator “Image in”. The process result is shown in the image represented by

the indicator “Image Out”.

B ImageGUL i

Figure 169. The front panel of ImageGUIL.vi

LabVIEW to CCS Link 191

S.

[1]

Bibliography

National Instruments, “LabVIEW Test Integration Toolkit for TI DSP”, Semptember
2003.

The Mathworks, “Link fot Code Composer Studio Development Tools, User’s Guide
version 27, 2006.

National Instruments, “LabVIEW User Manual”, April 2003.

Texas Instruments, “Code Composer Studio IDE, Getting Started Guide”, SPRUS509F,
May 2005.

Texas Instruments, “Real-Time Data Exchange”, SPRY012, Feb.1998.

Nasser Kehtarnavaz and Namjin Kim, “Digital Signal Processing System — Level
Design Using LabVIEW”, Elsevier, 2005.

Rulph Chassaing, Digital “Signal Processing and Applications with the C6713 and
C6416 DSK”, John Wiley & Sons, 2005.

Sem M. Kuo, Bob H.Lee and Wenshun Tian, “Real-Time Digital Signal Processing”,
John Wiley & Sons, 2006.

Istvan A.Szabo and Lajos Harasztosi, “Ways to use LabVIEW to aid DSP education”,
Proc. of the EDERS-2006, 2" European DSP Education & Research Symposium,
Munich, Germany, 4 April, 2006.

[10] E. Zigouris, D. Petropoulos, M. Kristalli and M. Hatzigiorgaki., “An integrated low-cost

laboratory enviroment for digital image processing applications”, Proc. of the
ICSES’04, International Conference on Signals and Electronics Systems, pp.569-572,
Poznan, Poland, 13-15 September, 2004.

	Table Of Contents
	1. Introduction
	1.1 Link for Code Composer Studio Development Tools
	1.2 Test Integration Toolkit for TI DSPs
	1.3 What is LabVIEW to CCS Link ?

	2. Description of subVIs in LabVIEW to CCS Link
	2.1 CCS Setup
	2.1.1 CCS_Setup_Open.vi
	2.1.2 CCS_Setup_Close.vi
	2.1.3 CCS_Setup_Clear.vi
	2.1.4 CCS_Setup_Add_Board.vi
	2.1.5 CCS_Setup_Rename_Board.vi
	CCS_Setup_Remove_Board.vi
	2.1.7 CCS_Setup_Rename_Processor.vi
	2.1.8 CCS_Setup_Boards_&_Processors.vi
	2.1.9 CCS_Setup_Save.vi

	2.2 CCS Automation
	2.2.1 CCS_Open.vi
	2.2.2 CCS_Close.vi
	2.2.3 CCS_Open_Project.vi
	2.2.4 CCS_Close_Project.vi
	2.2.5 CCS_Connect.vi
	2.2.6 CCS_Disconnect.vi
	2.2.7 CCS_Build_All.vi
	2.2.8 CCS_Build_Result.vi
	2.2.9 CCS_Download.vi
	2.2.10 CCS_Reset.vi
	2.2.11 CCS_Run.vi
	2.2.12 CCS_Restart.vi
	2.2.13 CCS_Halt.vi
	2.2.14 CCS_Is_DSP_Running.vi
	2.2.15 CCS_RTDX_Enable.vi
	2.2.16 CCS_RTDX_Disable.vi
	2.2.17 CCS_RTDX_Logfile_Configuration.vi

	2.3 CCS Communication
	2.3.1 RTDX_Channel_Disable.vi
	2.3.2 RTDX_Channel_Enable.vi
	2.3.3 RTDX_Channel_Status.vi
	2.3.4 RTDX_Read.vi
	RTDX_Read_F4.vi
	RTDX_Read_F8.vi
	RTDX_Read_Ι1.vi
	RTDX_Read_Ι2.vi
	RTDX_Read_Ι4.vi
	RTDX_Read_UΙ1.vi
	RTDX_Read_UΙ2.vi
	RTDX_Read_UΙ4.vi
	RTDX_Read_SA_F4.vi
	RTDX_Read_SA_F8.vi
	RTDX_Read_SA_Ι1.vi
	RTDX_Read_SA_Ι2.vi
	RTDX_Read_SA_Ι4.vi
	RTDX_Read_SA_UΙ1.vi
	RTDX_Read_SA_UΙ2.vi
	RTDX_Read_SA_UΙ4.vi

	2.3.5 RTDX_Write.vi
	RTDX_Write_F4.vi
	RTDX_Write_F8.vi
	RTDX_Write_Ι1.vi
	RTDX_Write_Ι2.vi
	RTDX_Write_Ι4.vi
	RTDX_Write_UΙ1.vi
	RTDX_Write_UΙ2.vi
	RTDX_Write_UΙ4.vi
	RTDX_Write_SA_F4.vi
	RTDX_Write_SA_F8.vi
	RTDX_Write_SA_Ι1.vi
	RTDX_Write_SA_Ι2.vi
	RTDX_Write_SA_Ι4.vi
	RTDX_Write_SA_UΙ1.vi
	RTDX_Write_SA_UΙ2.vi
	RTDX_Write_SA_UΙ4.vi

	2.3.6 MEM_Get_Address.vi
	2.3.7 MEM_Read.vi
	MEM_Read_F4.vi
	MEM_Read_F8.vi
	MEM_Read_Ι1.vi
	MEM_Read_I2.vi
	MEM_Read_I4.vi
	MEM_Read_UΙ1.vi
	MEM_Read_UI2.vi
	MEM_Read_UI4.vi
	MEM_Read_String.vi
	MEM_Read_A_F4.vi
	MEM_Read_A_F8.vi
	MEM_Read_A_I1.vi
	MEM_Read_A_I2.vi
	MEM_Read_A_I4.vi
	MEM_Read_A_UI1.vi
	MEM_Read_A_UI2.vi
	MEM_Read_A_UI4.vi

	2.3.8 MEM_Write.vi
	MEM_Write_F4.vi
	MEM_Write_F8.vi
	MEM_Write_I1.vi
	MEM_Write_I2.vi
	MEM_Write_I4.vi
	MEM_Write_UI1.vi
	MEM_Write_UI2.vi
	MEM_Write_UI4.vi
	MEM_Write_String.vi
	MEM_Write_A_F4.vi
	MEM_Write_A_F8.vi
	MEM_Write_A_I1.vi
	MEM_Write_A_I2.vi
	MEM_Write_A_I4.vi
	MEM_Write_A_UI1.vi
	MEM_Write_A_UI2.vi
	MEM_Write_A_UI4.vi

	2.3.9 Leds_Read_(DSK6713).vi
	2.3.10 Leds_Write_(DSK6713).vi
	2.3.11 Switches_Read_(DSK6713).vi

	3. Using the LabVIEW to CCS Link
	3.1 CCS Setup
	3.1.1 CCS Setup for one board
	3.1.2 CCS Setup for multiple boards

	3.2 CCS Automation
	3.2.1 Automate CCS to control one DSP
	3.2.2 Automate CCS to control more that one DSPs

	3.3 CCS Communication
	3.3.1 Direct DSP memory access
	Reading from the DSP memory
	Writing to the DSP memory

	3.3.2 Using the RTDX technology
	Receiving data through the RTDX channel.
	Sending data through the RTDX channel

	4. Applications
	4.1 A Three-band Graphical Equalizer
	4.1.1 Guidelines for graphical equalizers
	4.1.2 Specifications
	4.1.3 Design and control of the graphical equalizer using MA
	Filters’ coefficients computation.
	Generation of a hypothetical signal
	MATLAB results of the equalizer

	4.1.4 Implementation of the graphical equalizer in CCS
	4.1.5 Implementation of a VI to control the graphical equali
	The front panel of the Equalizer.vi
	The block diagram of the Equalizer.vi

	4.1.6 Results – Conclusions

	4.2 A Digital Image Processing Application
	4.2.1 Edge Detection
	Implementation of Sobel edge detection

	4.2.2 Direct and Inverse Discrete Cosine Transformation
	Implementation of the 2D-DCT using the 1D-DCT
	Implementing the 2D_DCT using the McGovern algorithm

	4.2.3 JPEG standard encoding and decoding
	Partial Implementation of JPEG image encoding

	4.2.4 Histogram Equalization
	Histogram equalization on a grayscale image
	Histogram equalization on a grayscale image
	Histogram equalization implementation on a color image in RG
	Histogram equalization implementation on a color image in YC

	4.2.5 Implementing the VI to control the application
	The ImageGUI.vi front panel
	The block diagram panel of the ImageGUI.vi

	4.2.6 Results – Conclusions

	5. Bibliography

