
Zigouris Th. Evangelos

Kalantzopoulos G. Athanasios

Vassalos E. Evangelos

LabVIEW to CCS Link

Internal Report

Electronics Laboratory
Computer and Electronics Division

Department of Physics
University of Patras

Patras 2007

LabVIEW to CCS Link i

LABVIEW TO CCS LINK

Table Of Contents

1. INTRODUCTION... 1

1.1 Link for Code Composer Studio Development Tools ... 1
1.2 Test Integration Toolkit for TI DSPs... 2
1.3 What is LabVIEW to CCS Link ? ... 3

2. DESCRIPTION OF SUBVIS IN LABVIEW TO CCS LINK 4

2.1 CCS Setup.. 4
2.1.1 CCS_Setup_Open.vi... 4
2.1.2 CCS_Setup_Close.vi .. 5
2.1.3 CCS_Setup_Clear.vi... 6
2.1.4 CCS_Setup_Add_Board.vi... 6
2.1.5 CCS_Setup_Rename_Board.vi .. 7
2.1.6 CCS_Setup_Remove_Board.vi .. 8
2.1.7 CCS_Setup_Rename_Processor.vi... 9
2.1.8 CCS_Setup_Boards_&_Processors.vi.. 10
2.1.9 CCS_Setup_Save.vi ... 10

2.2 CCS Automation.. 11
2.2.1 CCS_Open.vi.. 11
2.2.2 CCS_Close.vi ... 12
2.2.3 CCS_Open_Project.vi .. 13
2.2.4 CCS_Close_Project.vi.. 14
2.2.5 CCS_Connect.vi ... 14
2.2.6 CCS_Disconnect.vi .. 15
2.2.7 CCS_Build_All.vi .. 16
2.2.8 CCS_Build_Result.vi ... 17
2.2.9 CCS_Download.vi.. 18
2.2.10 CCS_Reset.vi ... 19
2.2.11 CCS_Run.vi.. 20
2.2.12 CCS_Restart.vi ... 21
2.2.13 CCS_Halt.vi ... 21
2.2.14 CCS_Is_DSP_Running.vi .. 22
2.2.15 CCS_RTDX_Enable.vi .. 23
2.2.16 CCS_RTDX_Disable.vi ... 24
2.2.17 CCS_RTDX_Logfile_Configuration.vi ... 25

2.3 CCS Communication ... 26
2.3.1 RTDX_Channel_Disable.vi ... 26
2.3.2 RTDX_Channel_Enable.vi... 27
2.3.3 RTDX_Channel_Status.vi.. 27
2.3.4 RTDX_Read.vi... 28
2.3.5 RTDX_Write.vi.. 42
2.3.6 MEM_Get_Address.vi ... 57
2.3.7 MEM_Read.vi .. 58
2.3.8 MEM_Write.vi ... 78

ii Contents

2.3.9 Leds_Read_(DSK6713).vi ... 98
2.3.10 Leds_Write_(DSK6713).vi .. 99
2.3.11 Switches_Read_(DSK6713).vi... 100

3. USING THE LABVIEW TO CCS LINK ... 102

3.1 CCS Setup.. 102
3.1.1 CCS Setup for one board.. 102
3.1.2 CCS Setup for multiple boards... 103

3.2 CCS Automation.. 105
3.2.1 Automate CCS to control one DSP .. 105
3.2.2 Automate CCS to control more that one DSPs .. 107

3.3 CCS Communication ... 109
3.3.1 Direct DSP memory access .. 109
3.3.2 Using the RTDX technology.. 111

4. APPLICATIONS... 114

4.1 A Three-band Graphical Equalizer .. 114
4.1.1 Guidelines for graphical equalizers.. 114
4.1.2 Specifications ... 117
4.1.3 Design and control of the graphical equalizer using MATLAB 117
4.1.4 Implementation of the graphical equalizer in CCS 123
4.1.5 Implementation of a VI to control the graphical equalizer 127
4.1.6 Results – Conclusions .. 133

4.2 A Digital Image Processing Application ... 136
4.2.1 Edge Detection ... 136
4.2.2 Direct and Inverse Discrete Cosine Transformation 141
4.2.3 JPEG standard encoding and decoding .. 156
4.2.4 Histogram Equalization.. 165
4.2.5 Implementing the VI to control the application 176
4.2.6 Results – Conclusions .. 188

5. BIBLIOGRAPHY.. 191

LabVIEW to CCS Link 1

1. Introduction

 The continuous growth of DSPs (Digital Signal Processors) led many companies such as
The Mathworks and National Instruments (NI) to incorporate specific tools for
communication with DSP development boards in their main utilities. Texas Instruments (TI)
holds the major part of the DSP market today and this is the reason why NI and The
Mathworks have emphasized to TI’s DSPs along with Code Composer Studio (CCS)
development environment.

1.1 Link for Code Composer Studio Development Tools

 The Mathworks, trying to follow the enormous growth of DSPs, created the “Link for
Code Composer Studio Development Tools”, which allows MATLAB and Simulink to
connect with the Code Composer Studio (CCS) environment and TI’s DSPs.
 The “Link for Code Composer Studio Development Tools” is a set of functions, with
which a two-way connection between MATLAB and CCS is created. Through this
connection, the control of CCS and by consequence the control of DSP is attainable, as shown
in figure 1. Using the above set of functions, data transfer from DSP memory or DSP
registers, is also attainable. Data transfer from DSP memory to MATLAB and in reverse, is
accomplished either by direct DSP memory access or by using TI’s RTDX (Real-Time Data
Exchange) technology.
 The “Link for Code Composer Studio Developments Tools v2.1” requires that CCS v3.1
or later as well as MATLAB R2006b or later, are already installed.

MATLAB and Simulink

Link for Code Composer Studio

C2000 C5000 C6000 OMAP

Code Composer Studio

Figure 1. MATLAB connection with CCS

 In order to create Graphical User Interfaces (GUIs), MATLAB offers GUIDE (GUI
Development Environment) that contains a set of tools for GUI development. These tools can
really simplify the GUI design and programming. Using GUIDE in combination with Link for
Code Composer Studio Development Tools, the user can create GUIs that will control and
communicate with applications on TI’s DSPs that are implemented with CCS.

2 1. Introduction

1.2 Test Integration Toolkit for TI DSPs

 For LabVIEW to connect with CCS, National Instrument (ΝΙ) offers a toolkit named
DSP Test Integration Toolkit for TI DSP v2.0. When the above toolkit is installed, LabVIEW
acquires a new set of subVIs, with which CCS can be software controlled and automated as
well as data can be transferred from CCS to LabVIEW and in reverse, either by direct DSP
memory read/write operations, or by using TI’s RTDX technology.
 The basic VIs that the toolkit provides, are separated into two main categories :
• Automation of CCS (CCS Automation VIs): VIs that belong to this category are used to

control CSS and consequently the DSP.
• Communication with CCS (CCS Communication VIs): The VIs of this category are used

for data transfers from DSP to LabVIEW and reversely, either by direct DSP memory
access, or by using TI’s RTDX technology.

The icon and name of every VI in Test Integration Toolkit for TI DSPs is presented in Table
1, according to the category that it belongs.

Automation of CCS Communication with CCS
Icon Name Icon Name

CCS Open Project.vi

CCS RTDX Read.vi

CCS Build.vi

CCS RTDX Write.vi

CCS Download Code.vi

CCS RTDX Enable.vi

CCS Run.vi

CCS RTDX Enable Channel.vi

CCS Halt.vi

CCS RTDX Disable.vi

CCS Close Project.vi

CCS RTDX Disable Channel.vi

CCS Window Visibility.vi

CCS Memory Read.vi

CCS Reset.vi

CCS Memory Write.vi

CCS Symbol to Memory Address.vi

Table 1. NI’s Test Integration Toolkit for TI DSPs VΙs

 NI’s toolkit requires that LabVIEW v7.0 or later and Code Composer Studio v2.2 or
later is already installed. This toolkit does not support reading and writing floating point
numbers and tables by direct DSP memory access. It also does not support reading and
writing unsigned integers either by direct DSP memory access, or by using the RTDX
technology. Moreover, NI’s toolkit does not support the new CCS v3.1 capabilities, such as
dynamic board connect and disconnect, which leads to the fact that CCS can not be efficiently
controlled through LabVIEW.

LabVIEW to CCS Link 3

1.3 What is LabVIEW to CCS Link ?

 Following the design philosophy of NI’s Test Integration Toolkit for TI DSPs and in
order to overcome its weak points, a new toolkit is created from scratch “LabVIEW to CCS
Link”. This new toolkit has the advantage of fully controlling the Code Composer Studio v3.1
and communicating with TI’s DSPs. Additionally it provides the opportunity to control
CCStudio Setup v3.1, so that the hardware with which the CCS will communicate, could be
software define through LabVIEW. This toolkit supports reading and writing numbers and
tables of all kind (floating-point single or double precision, signed and unsigned 1-, 2-, or 4-
bytes integers) as well as strings by direct DSP memory access. Moreover it supports number
and table (floating-point single or double precision, signed and unsigned 1-, 2-, or 4-bytes
integers) transfers from/to DSP, using the RTDX technology. The LabVIEW to CCS Link
requires that LabVIEW v7.1 or later and Code Composer Studio v3.1 are already installed. In
figure 2 the connection between LabVIEW and CCS is presented, using the LabVIEW to CCS
Link.

C2000

LabVIEW to CCS Link

C5000 C6000 OMAP

Figure 2. LabVIEW connection with CCS

 Using LabVIEW to CCS Link one can create in a fast and easy way VIs that will
actually work as Graphical User Interfaces (GUIs) for controlling and managing DSPs’
applications. The LabVIEW to CCS Link is a very useful tool not only for educational
purposes but for DSP system designers as well, because of the little time, needed to develop
GUIs. This is ought to LabVIEW graphical programming language and to the advantages of
LabVIEW to CCS Link. Combining the capabilities of this toolkit and LabVIEW, the user can
create GUIs for DSPs’ applications, with huge potential for both controlling the application
and further result processing or data preprocessing.

4 2. Description of subVIs in LabVIEW to CCS Link

2. Description of subVIs in LabVIEW to CCS Link

 The LabVIEW to CCS Link subVIs are separated into three categories, according to
their usage :

• CCS Setup
• CCS Automation
• CCS Communication

2.1 CCS Setup

 The subVIs that belong to CCS Setup category control the CCStudio Setup v3.1 or later
so that the board(s) that will communicate with CCS could be software defined. The term
“board(s)” contains both development platforms and simulators. CCS does not support the
usage of multiple simulators at the same time. However it does support, the presence of one
simulator and one or more boards, simultaneously. The CCS setup category SubVIs are
presented in Table 2.

Icon Name Icon Name

CCS_Setup_Open.vi CCS_Setup_Remove_

Board.vi

CCS_Setup_Close.vi CCS_Setup_Rename_

Processor.vi

CCS_Setup_Clear.vi CCS_Setup_Boards_&_

Processors.vi

CCS_Setup_
Add_Board.vi CCS_Setup_Save.vi

CCS_Setup_Rename_
Board.vi

Table 2. The VIs of the CCS Setup category

2.1.1 CCS_Setup_Open.vi

 The subVI CCS_Setup_Open.vi, shown in Figure 3, loads the CCStudio Setup and
creates a reference to CCStudio Setup.

 CCSetup Out
error out

Visible
error in

Figure 3. The CCS_Setup_Open.vi

 Input “Visible” is Boolean and controls if the CCStudio Setup window will become
visible to the user. Its default value is True.

LabVIEW to CCS Link 5

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. If any error occurs before the execution of this
specific VI, no action will be made by this VI and the content of input “error in” will
pass to output “error out”. The VI will work normally only if no error has occurred in
earlier stages. The default value of this input is the “no error” situation. The elements
that constitute input “error in” are:

 Input “status” is Boolean. Its value is False () if no error has occurred before
this VI execution, or True () if any error has occurred earlier. Its default
value is False.

 Input “code” is a 32-bit integer showing the error code. If input “status” has a
True value then the input “code” will have a non-zero value representing the
specific error, otherwise it will have a zero value. Its default value is zero.

 Input “source” is a String describing an error. Its value is an empty string, if no
error has occurred. Its default value is an empty String.

 Output “CCSetup Out” is a reference to CCStudio Setup.

 Output “error out” is a cluster of outputs containing errors information. If the
“error in” input, shows that an error has occurred before the execution if the VI, then
the “error out” output’s content will be the same as the “error in” input’s, otherwise it
will describe the error that might has occurred during the execution of this specific VI.
The elements that constitute output “error out” are:

 Output “status” is Boolean. Its value is False () if no error has occurred,
otherwise its True ().

 Output “code” is a 32-bit integer showing the error code. If the “status” output
has a True value, then the “code” output will have a non-zero value
representing the specific error, otherwise it will have a zero value.

 Output “source” is a String describing an error. Its value is an empty string, if
no error has occurred.

2.1.2 CCS_Setup_Close.vi

 The subVI CCS_Setup_Close.vi shown in Figure 4, closes the CCStudio Setup and the
reference that the CCS_Setup_Open.vi has created.

error outCCSetup In

error in

Figure 4. The CCS_Setup_Close.vi

 Input “CCSetup In” is a reference to CCStudio Setup.

 fore

the e “error in” are:
Inpu “e ave occurred bet rror in” is a cluster of inputs describing the error that may h

putex cution of this specific VI. The elements that constitute in
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

6 2. Description of subVIs in LabVIEW to CCS Link

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.vi

 The subVI CCS_Setup_Clear.vi shown in Figure 5, clears all the setting that have been
made at CCStudio Setup.

p Out
error out

CCSe
error in

2.1.3 CCS_Setup_Clear

 CCSetutup In

Figure 5. The CCS_Setup_Clear.vi

Input “CCSetup In” is a reference to CCStudio Setup.

 Inpu “ may have occurred

befo stitute input “error in”
are:

t error in” is a cluster of inputs describing the error that
re the execution of this specific VI. The elements that con

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 o CCStudio Setup.

Output “CCSetup Out” is a reference t

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

 The subVI CCS_Setup_Add_Board.vi, shown in Figure 6, adds a board to CCStudio
Setup. The drivers (files with .ccs

2.1.4 CCS_Setup_Add_Board.vi

 extension) of this board are declared to input “Driver Path”.

 CCSetuCCSetup In p Out
error outDriver Path

error in
Options

Figure 6. The CCS_Setup_Add_Board.vi

 ference to CCStudio Setup. Input “CCSetup In” is a re

 Input “Driver Path” is the full path for the drivers of the board that is to be added. The
drivers files for all the boards that are supported by Code Composer Studio v3.1, as

LabVIEW to CCS Link 7

long as CCS is installed to its s\
im rt*.cc

 default location, are in C:\CCStudio_v3.1\driver
po s (file name).

 Inp “Opti ege

ut ons” is a 32-bit int r with specified states that are presented in Table 3.

Value State Description

0 CLEAR_ORIGINAL
rd that is about to be added, already exists Detects if the boa

even with another name. If it is, then it is replaced with its
default name.

1 NO_DUPLICATES oard that is about to be added, already exists
according to its name. If it is, then it is not being added.
Detects if the b

2 REPLACE_DUPLICATES
bout to be added, already exists

according to its name. If it is, then then it is replaced with
Detects if the board that is a

its default name.

3 RENAME_DUPLICATES
Detects if the board that is about to be added, already exists
according to its name. If it is, then it is replaced with
another name.

Table 3. The states of “Options” input.

 Input “error in” is a cluster of inputs describing the error that may have occurred

at constitute input “error in”
are:
before the execution of this specific VI. The elements th

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

 Out t . pu “CCSetup Out” is a reference to CCStudio Setup

 Output “error out” is a cluster of outputs containing errors information. The elements
: that constitute output “error out” are

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.1.5 CCS_Setup_Rename_Board.vi

 The subVI CCS_Setup_Rename_Board.vi, shown in Figure 7, gives to the board
indicated by the input “Board” the name that is included in input “New Name”. In order to the
CCS_Setup_Rename.vi to b

e used, at least one board has to be set to the CCStudio Setup.

 CCSetuCCSetup In
Board

p Out
error out

error in
New Name

Figure 7. The CCS_Setup_Rename_Board.vi

 Input “CCSetup In” is a reference to CCStudio Setup.

 Input “Board” is a 32-bit integer showing which board, from those that are set to
CCStudio Setup, will be renamed. If N boards are set then the input “Board” can take

8 2. Description of subVIs in LabVIEW to CCS Link

values from zero to N-1, otherwise an error will occur. The default value of input
“Board” is zero.

 Inpu “

t New Name” is a String and defines the board’s new name.

 Inpu “ error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

t error in” is a cluster of inputs describing the

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Out t

pu “CCSetup Out” is a reference to CCStudio Setup.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.1.6 CCS_Setup_Remove_Board.vi

 The subVI CCS_Setup_Remove_Board.vi, shown in Figure 8, removes the
boardindicated by the input “Board ent setting. In order for the
CCS_Setup_Remove_Board to be set to the CCStudio
Setup.

” from the CCStudio Setup curr
.vi to be used at l ast one board has e

 CCSetup Out

error out
CCSetup In

error in
Board

Figure 8. The CCS_Setup_Remove_Board.vi

 Input “CCSetup In” is a reference to CCStudio Setup.

 “Board” is a 32-bit integer showing which board, from those that are set to
CCS ud ut “Board” can take
valu s default value of input
“Bo rd

Input
t io Setup, will be removed. If N boards are set then the inp
e from zero to N-1, otherwise an error will occur. The
a ” is zero.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.

 Input “source” is a String describing an error.

 Output “CCSetup Out” is a reference to CCStudio Setup.

LabVIEW to CCS Link 9

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.1.7 CCS_Setup_Rename_Processor.vi 2

 The subVI CCS_Setup_Rename_Processor.vi shown in Figure 9, renames the processor
declared by the inputs “Processor” and “Board” according to the name indicated by the input
“ProcName”. The input “Board” defines the board that contains the specific processor, while
the input “Processor” defines the processor. In order for the CCS_Setup_Rename_
Processor.vi to be used, at io Setup.

t
CCSetup In

error in

 least one board has to be set to the CCStud

CCSetup Out
error ouBoard

Processor

ProcName

Figure 9. The CCS_Setup_Rename_Processor.vi

 Input“ProcName” is a String containing the name that is to be given to the processor.

Input “CCSetup In” is a reference to CCStudio Setup.

 oard’s processor that is to be renamed.
If N boards are set then the input “Board” can take values from zero to N-1, otherwise

Input “Board” is a 32-bit integer showing the b

an error will occur.The default value of input “Board” is zero.

 “Processor” is a 32-bit integer showing the processor that is to be renamed. If the
boa , s Μ processors then
the p ror will occur.
The e

Input
rd that includes this processor (declared by input “Board”), ha
in ut “Processor” can take values from 0 to Μ-1, otherwise an er
 d fault value of input “Processor” is zero.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
Input “code” is a 32-bit integer showing the error code.

 Input “source” is a String describing an error.

 Output “CCSetup Out” is a reference to CCStudio Setup.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.

Output “source” is a String describing an error.

10 2. Description of subVIs in LabVIEW to CCS Link

2.1.8 CCS_Setup_Boards_&_Processors.vi

 T in Figure 10, returns an array to

e outp
he subVI CCS_Setup_Boards_&_Processors.vi shown
ut “Boards & Processors” showing the current settings of CCStudio Setup. th

 CCSetup OutCCSetup In

error outerror in Boards & Processors

Figure 10. The CCS_Setup_Rename_Processor.vi

 Input “CCSetup In” is a reference to CCStudio Setup.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 e to CCStudio Setup. Output “CCSetup Out” is a referenc

 Output “Boards & Processors” is a two-dimensional array with String elements

showing the current settings of CCStudio Setup. The first element of each row has the
me o the name of the

proc ss
thre p lement of the array’s row will
be “my_board”, the second element will be “cpu1”, the third element will be “cpu2”
and the fourth one will be “cpu3”.

na f the board, while the next elements of each row have
e or that the specific board contains. For a board named my_board that contains
e rocessors named cpu1, cpu2 and cpu3, the first e

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.1.9 CCS_Setup_Save.vi

 T saves the settings to CCStudio

etup.

error in

he subVI CCS_Setup_Save.vi, shown in Figure 11,
S

 CCSetup OutCCSetup In
error out

Figure 11. The CCS_Setup_Save.vi

 Input “CCSetup In” is a reference to CCStudio Setup.

LabVIEW to CCS Link 11

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

: are
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCSetup Out” is a reference to CCStudio Setup.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.2 CCS Automation

 The subVIs that bel CCS Automation category can fully control the Code
Composer Studio v3.1 or later and by consequence
category are presented.

ong to the
the DSP. In Table 4 the subVIs of this

Icon Name Icon Name

CCS_Open.vi CCS_Reset.vi

CCS_Close.vi CCS_Run.vi

CCS_Open_
Project.vi CCS_Restart.vi

CCS_Clo
Project.vi

se_ CCS_Halt.vi

CCS_Connect.vi CCS_Is_DSP_

Running.vi

CCS_RTDX_EnabCCS_Disconnect.vi le.vi

CCS_Build_All.vi

CCS_RTDX_Disable.vi

CCS_RTDX_Logfile_
 Result.vi

CCS_Build_
Configuration.vi

CCS_Download.vi

Table 4. The VIs of the CCS Automation category

2.2.1 CCS_Open.vi

 The subVI CCS_Open.vi shown in Figure12 opens the CCS.

12 2. Description of subVIs in LabVIEW to CCS Link

 CCS Out
CCS Visible

error outerror in
Is CCS Visible

Figure 12. The CCS_Open.vi

 Inpu “ Manager (PDM) is
goin more than one board.
How v then the input “CCS Visible”

t CCS Visible” is Boolean and controls if the Parallel Debug
g to be visible, when the CCS has been set to support
e er, when CCS is set to support onle one board

defines if the Debug Window of CCS will be visible. Its default value is True.

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 In

put “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ing information about CCS.

Output “CCS Out” its a group contain

 Out t l Debug Manager is
visi e s been chosen) or if the Debug
Window of CCS is visible (as long as the single board support setting has been

pu “Is CCS Visible” is Boolean and shows if the Paralle
bl (as long as the multiple board support setting ha

chosen).

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.2.

T
refe en

2 2 CCS_Close.vi

 he subVI CCS_Close.vi, shown in Figure 13, closes the CCS and the relative

r ces.

 CCS In

error outerror in

Figure 13. The CCS_Close.vi

 information about CCS.

Input “CCS In” is a cluster containing

 Inpu “ may have occurred
befo that constitute input “error in”
are:

t error in” is a cluster of inputs describing the error that
re the execution of this specific VI. The elements

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

LabVIEW to CCS Link 13

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 ing an error.

2.2.3 CCS_Open_Project.vi

 The subVI CCS_Open_Project.vi, shown in Figure 14, opens the project indicated by
the input “Project Path” in the oard’s processor indicated by

e input “Boards & Processor”.

Output “source” is a String describ

Debug Window of CCS for the b
th

error outerror in

CCS In
Project Path In

Board & Processor

CCS_Event_Notif_Out
CCS Out

Debug Window Visible

Figure 14. The CCS_Open_Project.vi

 Inpu “
extension) which is about to be loaded.

t Project Path In” is a String indicating the full path of the project (file with .pjt

 Input “ ntaining information about CCS.

CCS In” is a cluster co

 Input “Board & Processors” is a cluster of inputs showing the board and the processor
which will be used for the project’s implementation. Input “Board & Processor” is
constituted by the below elements:

 Input “Processor” is a 8-bit, unsigned integer showing the processor to be used.
Its default value is zero.

 Input “Board” is a 8-bit, unsigned integer showing the board to be used. Its
default value is zero.

 occurred

before the execution of this specific VI. The elements that constitute input “error in”
Input “error in” is a cluster of inputs describing the error that may have

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Debug Window Visible” is Boolean and controls if the Debug Window of CCS

will be visible for the specific board and processor. Its default value is True.

 Out t ation relative to the
eve s

pu “CCS_Event_Notif_Out” is a cluster that contains inform
nt that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

14 2. Description of subVIs in LabVIEW to CCS Link

t “error out” are:

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute outpu

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describ

2.2.

e project and clears all
fo ation rela

ing an error.

4 CCS_Close_Project.vi

 The subVI CCS_Close_Project.vi, shown in Figure 15, close th

rm ted to that. in

CCS In

CCS_Event_Notif_In
CCS Out

error outerror in

i Figure 15. The CCS_Close_Project.v

 Input “CCS_Event_Notif_In” is a cluster that contains informa

events that may happen to CCS.
tion relative to the

 Input “CCS In” is a cluster containing information about CCS.

 u “ ay have occurred

befo itute input “error in”
are:

Inp t mt error in” is a cluster of inputs describing the error tha
 that constre the execution of this specific VI. The elements

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.2.5 CCS_Connect.vi

The subVI CCS_Connect.vi, shown in Figure 16, gives CCS the command to connect to
the a
the boa
use a si

2

bo rd. In fact it takes advantage of the capability of CCS v3.1 for dynamic connection to

rd. The CCS_Connect.vi has no meaning to be used when CCS has already been set to
mulator, because in this case the dynami connection is not supported by the CCS.

error out

CCS In

error in

CCS Out
Timeout Connection Status

Figure 16. The CCS_Connect.vi

LabVIEW to CCS Link 15

Input “CCS In” is a cluster containing information about CCS.

 Inpu “ ime period in msec,
from th nt the connection with
the r um time period has passed and
no connection has been made, an error occurs. Because of the fact that many processes

r’s pc, the values of
input “Timeout” may have to be increased. Its default value is 10 sec (10000 msec).

t Timeout” is a 32-bit integer, and it defines the maximum t
 e moment the execution of the VI started till the mome

ca d has been successfully completed. If this maxim

related to CCS and board communication are depended on the use

 in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
a

Input “error

re:
 Input lean a d. “status” is Boo nd shows if any error occurre
 Input bit in “code” is a 32- teger showing the error code.
 Inpu

t “source” is a String describing an error.

 Output “CCS Out” is t CCS. a cluster containing information abou

 Output “Connection Status” is a 32-bit integer with specific states that are presented
in Table 5.

Value State Description

0 to CCS CONNECTED Board has been connected
1 unning CONNECTING Board connect process is r
2 DISCONNECTED Board has been disconnected to CCS
3 DISCONNECTING Board disconnect process is running

Table 5. States of input “Connection Status”

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.2.6 CCS_Disconnect.vi

T CS the command to
isc nn

disc nn
already
suppor

error in

d

he subVI CCS_Disconnect.vi shown in Figure17 gives C
o ect to the board. In fact it takes advantage of the capability of CCS v3.1 for dynamic
o ection to the board. The CCS_Disconnect.vi has no meaning to be used when CCS has

 been set to use a simulator, because in this case the dynami connection is not
ted by the CCS.

 CCS In CCS Out

error out
Timeout Connection Status

Figure 17. The CCS_Disconnect.vi

 “CCS In” is a cluster containing information about CCS. Input

16 2. Description of subVIs in LabVIEW to CCS Link

 Inpu “ time period in msec,
from th the moment the disconnection
with the card has been successfully completed. If this maximum time period has

use of the fact that
many processes related to CCS and board communication are depended on the user’s

).

t Timeout” is a 32-bit integer, and it defines the maximum
 e moment the execution of the VI started till

passed and no disconnection has been made, an error occurs. Beca

pc, the values of input “Timeout” may have to be increased. Its default value is 10 sec
(10000 msec

 Input “error in” is a cluster of inputs describing the error that may have occurred

bef e the ex spec stitute input “error in”
are

or ecution of this ific VI. The elements that con
:
 Inpu ean a t “status” is Bool nd shows if any error occurred.
 Inpu it int “code” is a 32-b teger showing the error code.
 Input “source

” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 that are presented
in T l

Output “Connection Status” is a 32-bit integer with specific states
ab e 6.

Value State Description
0 CONNECTED Board has been connected to CCS
1 CONNECTING Board connect process is running
2 DISCONNECTED Board has been disconnected to CCS
3 DISCONNECTING Board disconnect process is running

Table 5. States of input “Connection Status”

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describ

.2.

 T
project
is descr

error in

ing an error.

2

7 CCS_Build_All.vi

he subVI CCS_Build_All.vi, shown in Figure 18, gives the command to build the
 and to create the executable file (with .out extension) for the project and the board that
ibed by the information from input “CCS In”.

 CCS In CCS Out
Timeout

error out

Figure 18. The CCS_Close_Project.vi

 “CCS In” is a cluster containing information about CCS.

Input

 Inpu “ time period in msec,
from th e moment the project build has

t Timeout” is a 32-bit integer, and it defines the maximum
 e moment the execution of the VI started till th

LabVIEW to CCS Link 17

been successfully completed. If this maximum time period has passed and the project
the fact that many

processes related to CCS and board communication are depended on the user’s pc, the
has not been successfully built, an error occurs. Because of

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Inpu “ may have occurred
befo that constitute input “error in”
are:

t error in” is a cluster of inputs describing the error that
re the execution of this specific VI. The elements

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.2.8 CCS_Build_Result.vi

T
cc_ il
build. T
comple

rrors passes to output “error out” an error message informing the
ub Is

2

 he subVI CCS_Build_Result.vi, shown in Figure 19, controls the file

bu d_Debug.log for errors, warnings or remarks that may have occurred after the project’s
he file cc_build_Debug.log is created automatically by CCS when the build process is
ted. If CCS_Build_Result.vi locates an error, warning or remark and the input “Ignore
From Build” is False, itE

s V that follow.

error error in
Ignore Errors From Build

out

CCS In CCS Out
Remarks
Warnings
Errors

Build Result

Figure 19. The CCS_Build_Result.vi

 Input “CCS In” is a cluster containing information about CCS.

“Ignore Errors From Build” is False and an error, warning or remark has been noticed
Input “Ignore Errors From Build” is Boolean. Its default value is False. If input

during the build process, then an error will be passed to “error out” output informing
the subVIs that follow.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.

18 2. Description of subVIs in LabVIEW to CCS Link

 Input “source” is a String describing an error.

 urred during build
proc ss d”

Output “Error” is a String showing the number of errors that occ
e , regardless of the value of input “Ignore Errors From Buil

 Output “Warnings” is a String showing the number of warnings that occurred during
build process, regardless of the value of input “Ignore Errors From Build”

 Output “Remarks” is a String showing the number of remarks that occurred during

build process, regardless of the value of input “Ignore Errors From Build”

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Build Result” is a String showing showing the results from the building
process of a project, regardless of the value of input “Ignore Errors From Build”

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.2.9

The subVI CCS_Download.vi, shown in Figure 20, gives the command to CCS to
dow lo
project
project
CCS_D

error in

CCS Out

2 CCS_Download.vi

n ad the executable file (with .out extension) to DSP. During the building process of the

s, the name of the executable must have been declared exactly as the name of the
 and its path must be set to the Debug directory (default CCS settings) otherwise the
ownload.vi could not locate the specified file and an error will occur.

CCS In

Timeout

CCS_Event_Notif_OutCCS_Event_Notif_In

error out

Figure 20. The CCS_Download.vi

 Inpu “
eve s

t CCS_Event_Notif_In” is a cluster that contains information relative to the
nt that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 er, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the executable file

e period has passed
and the executable file has not been downloaded to the DSP, an error occurs. Because

Timeout” may have to be increased. Its default

Input “Timeout” is a 32-bit integ

has been successfully downloaded to the DSP. If this maximum tim

of the fact that many processes related to CCS and board communication are depended
on the user’s pc, the values of input “
value is 10 sec (10000 msec).

LabVIEW to CCS Link 19

 Inpu “ error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

t error in” is a cluster of inputs describing the

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a clu about CCS. ster containing information

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

CCS_Reset.vi

he subVI CCS_Reset.vi, shown in Figure 21 commands the DSP, through CCS, to
 its initial state.

2.2.10

 T

set tore

CCS In CCS Out

CCS_Event_Notif_OutCCS_Event_Notif_In

 error in
Timeout

Figure 21. The CCS_Reset.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the reset of the DSP
has been completed successfully. If this maximum time period has p
of t th

assed and the reset
th D at many processes

rela d er’s pc, the values of
inpu “ lue is 10 sec (10000 msec).

e SP has not been made, an error occurs. Because f the fac
 on the uste to CCS and board communication are depended

t Timeout” may have to be increased. Its default va

 Input “error in
before the exec

” is a cluster of inputs describing the error that may have occurred
ution of this specific VI. The elements that constitute input “error in”

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

20 2. Description of subVIs in LabVIEW to CCS Link

 Output “CCS_Event_Notif_Out” s information relative to the
events that may happen to C

is a cluster that contain
CS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.2.11

 T
initiate e

error in

ut

2 CCS_Run.vi

he subVI CCS_Run.vi, shown in Figure 22, commands the DSP, through CCS, to
the ex cution of the progrtam.

 CCS In CCS O
Timeout

error out

Figure 22. The CCS_Run.vi

 information about CCS.

Input “CCS In” is a cluster containing

 Inpu “ me period in msec,
from th moment that execution of the
program will be initiated by the DSP. If this maximum time period has passed and the
execution of the main program has not been started, an error occurs. Because of the
fact that many processes related to CCS and board communication are depended on

alues of input “Timeout” may have to be increased. Its default value
is 10 sec (10000 msec).

t Timeout” is a 32-bit integer, and it defines the maximum ti
 e moment the execution of the VI started till the

the user’s pc, the v

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 3 ror code. 2-bit integer showing the er
 Input “source” is a String describing an error.

 ntaining information about CCS. Output “CCS Out” is a cluster co

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

LabVIEW to CCS Link 21

.2.12 CCS_Restart.vi

 T
from its initial value.

_Out

2

he subVI CCS_Restart.vi , shown in Figure 23, restarts the DSP’s Program Counter

 vent_Notif
CCS In CCS Ou

CCS_ECCS_Event_Notif_In

error outerror in

t
Timeout

Figure 23. The CCS_Restart.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 information about CCS.

Input “CCS In” is a cluster containing

 Inpu “ me period in msec,
from th the moment the restart of the
Program Counter to its initial value has benn completed successfully. If this maximum
time period has passed and the restart of th PC has not been made, an error occurs.

fact that many processes related to CCS and board communication are
depended on the user’s pc, the values of input “Timeout” may have to be increased. Its

t Timeout” is a 32-bit integer, and it defines the maximum ti
 e moment the execution of the VI started till

Because of the

default value is 10 sec (10000 msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a S tring describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains info

events that may happen to CCS.
rmation relative to the

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.2.13

 The s V , through CCS, to stop
the executi i is executed when the DSP is

alted, the command is simply ignored and no error occurs.

CCS_Halt.vi

ub I CCS_Halt.vi, shown in Figure 24, commands the DSP
on of the main program. In case the CCS_Halt.v

h

22 2. Description of subVIs in LabVIEW to CCS Link

 CCS In CCS Out
Timeout

error outerror in

Figure 24. The CCS_Halt.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the execution of the

ot been halted by the DSP, an error occurs. Because of the fact that
many processes related to CCS and board communication are depended on the user’s
pc, the values of input “Timeout” may have to be increased. Its default value is 10 sec
(10000 msec).

main program is halted. If this maximum time period has passed and the execution of
the program has n

 Input “error in” is a cluster of inputs describing the error th

before the execution of this specific VI. The elements that constitu
at may have occurred

te input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Out t S. pu “CCS Out” is a cluster containing information about CC

 Output “error out” is a cluster of outputs containing errors inform

that constitute output “error out” are:
ation. The elements

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

T
exec ti

2.2.14 CCS_Is_DSP_Running.vi

 he subVI CCS_Is_DSP_Running.vi, shown in Figure 25, controls if the DSP is

u ng any program.

 CCS In CCS Out

error out
error in

DSP_Sta
Running

te

re 25. The CCS_Is_DSP_Running.vi Figu

 Input “CCS In” is a cluster containing information about CCS.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

LabVIEW to CCS Link 23

 Output “CCS Out” is a cluster containing information about CCS.

 Output “DSP_State” is a 32-bit integer showing the DSP status. The value -1 means

gram
and e

that the DSP is in an undefined state or the connection between the board and the CCS
has been lost. The value 0 means that the DSP has stopped the execution of a pro

 th value 1 means that the DSP is running a program.

 Output

 “Is CCS Visible” is Boolean showing if the DSP is running a program (True).

 Out t
that con

pu “error out” is a cluster of outputs containing errors information. The elements
stitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 e. Output “code” is a 32-bit integer showing the error cod
 Output “source” is a String describing an error.

2.2.15

 T
technol

CCS_RTDX_Enable.vi

he subVI CCS_RTDX_Enable , shown in Figure 26, enables and controls the RTDX
ogy.

error out

CCS In

error in

CCS Out
RTDX Settings

Timeout

Figure 26. The CCS_RTDX_Enable.vi

 Inpu “ ut CCS. t CCS In” is a cluster containing information abo

 Input “RTDX Settings” is a cluster of inputs containing information for setting the
RTDX technology. Input “RTDX Settings” is constituted by the below elements:

 Input “Mode” is a 32-bit integer with specific states, indicating the method that
the RTDX technology will follow. The value 0 means that the Non Continuous

uous method will method will be used, while the value1 means that the Contin
be used. Its default value is zero (Non Continuous).

 Input “Buffer Size” is a 32-bit integer, indicating the size in bytes of each
buffer that the RTDX technology uses. Its default value is 1024.

 Input “Num of Buffers” is a 32-bit inte
that the RTDX tech

ger, indicating the number of buffers
nology uses. Its default value is 4.

from the moment the execution of the VI started till the moment the RTDX technology
is successfully enabled. If this maxim m time period has passed and the RTDX
technology has not be cause of the fact that many
processes related to CCS and board communi

 value is 10 sec (10000

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

u
en enabled, an error occurs. Be

cation are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default
msec).

24 2. Description of subVIs in LabVIEW to CCS Link

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.2.16

 The su V e RTDX technology.

CCS_RTDX_Disable.vi

b I CCS_RTDX_Disable.vi, shown in Figure 27, disables th

error out

CCS In

error in

CCS Out

Timeout

Figure 27. The CCS_RTDX_Enable.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the RTDX technology
is successfully disabled If this maximum time period has passed and the RTDX
technology has not been disabled, an error occurs. Because of the fact that many
processes related to CC epended on the user’s pc, the

value is 10 sec (10000
S and board communication are d

values of input “Timeout” may have to be increased. Its default
msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 ribing an error. Input “source” is a String desc

 Output

 “CCS Out” is a cluster containing information about CCS.

 Out t
that con

pu “error out” is a cluster of outputs containing errors information. The elements
stitute output “error out” are:
Output “status” is Boolean and shows if any error occurred.
Output “code” is a 32-bit integer showing the error code.

 ” is a String describing an error. Output “source

LabVIEW to CCS Link 25

2.2.

The subVI CCS_RTDX_Logfile_Configuration.vi, shown in Figure 28, controls the
prop rt
Contin

17 CCS_RTDX_Logfile_Configuration.vi

e ies of the Logfile (with .rtd extension) that the RTDX technology uses when the Non

uous method has been chosen.

erro
error in

r out

CCS In CCS Out
Logfile Parameters

Logfile Path

Figure 28. The CCS_RTDX_Enable.vi

 Input “CCS In” is a cluster containing information about CCS.

 mation for setting
the a chnology, if the Non
Con n ameters” is constituted by the
below elements:

Input “Logfile Parameters” is a cluster of inputs that contain infor
 p rameters of the Logfile that will be used from the RTDX te
ti uous method will be chosen. Input “Logfile Par

 Input “FileSize” is a 32-bit integer, defining the size of the Logfile in bytes. Its
default value is 32768 bytes.

 Input “FileFullMode” is a 32-bit integer with specific states, indicating the way
that the Logfile will be created. The value 0 corresponds to the Discard method
which is the default. The value 1 corresponds to the Circular method.

 Input “FileOpenMode” is a 32-bit integer with specific states, indicating the
way that the Logfile will be opend. The value 0 corresponds to the RTDX
_Read_Only method. The value 1 corresponds to the RTDX _Append method
and the value 2 corresponds to the RTDX _Over_ Write method, which is the
default value .

 Input “Logfile Path” is a string, defining the path that the Logfile will be craeted. Its

default value is C:\CCStudio_v3.1\cc\bin\logfile.rtd (default CCS setting).

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the ex cutio cific VI. The e at constitute input “error in”
are:

e n of this spe lements th

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input sour g describing an

 “ ce” is a Strin error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a clus ation. The elements
that constitute

ter of outputs containing errors inform
output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

26 2. Description of subVIs in LabVIEW to CCS Link

2.3 CCS Communication

 The subVIs that belong to the CCS Communication are used for data exchange between
LabVIEW and CCS. With th that will send to and receive

om the DSP, data, either by direct DSP memory access, or by the RTDX technology. The
sub Is

ese subVIs, the user can develop VIs
fr

V of this category are presented in Table 7.

Icon Name Icon Name

RTDX_Channel_
Disable.vi

MEM_Read.vi

RTDX_Channel_
Enable.vi

MEM_Write.vi

RTDX_Channel_
Status.vi

Leds_Read_
(DSK6713).vi

Leds_Writ
(DSK6713)

e_

RTDX_Read.vi .vi

Switches_Read_
(DSK6713).vi RTDX_Write.vi

MEM_Get_
Address.vi

Table 7. The subVIs of the CCS Communication category

.3.1 RTDX_Channel_Disable.vi

in Figure 29, disables the RTDX channel

 In

error in

CCS Out
Channel

2

The subVI RTDX_Channel_Disable.vi, shown
indicated by the input “Channel”.

 CCS

error out

Figure 29. The RTDX_Channel_Disable.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel that will be

disabled.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 27

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.2 RTDX_Channel_Enable.vi

 The subVI RTDX_Channel_Enable.vi, shown in Figure 30, enables the RTDX channel
indicated by the input “Channel”.

error out

CCS In

error in

CCS Out
Channel

Figure 30. The RTDX_Channel_Enable.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel that will be
enabled.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.

 T subV s the status of the
RTDX chan e

3 RTDX_Channel_Status.vi

he I RTDX_Channel_Enable.vi, shown in Figure 31, designate
n l indicated by the input “Channel”.

error out

CCS In

error in

CCS Out
Channel ChannelStatus

Figure 31. The RTDX_Channel_Status.vi

 Input “CCS In” is a cluster containing information about CCS.

28 2. Description of subVIs in LabVIEW to CCS Link

 Input “Channel” is a String, defining the name of the RTDX channel the status of
which, will be checked.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the xe cific VI. The input “error in”
are:

 e cution of this spe elements that constitute

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Inp t “ describing a

u source” is a String n error.

 Output “C S O ontaining info m

C ut” is a cluster c r ation about CCS.

 Output “ChannelStatus” is a 32-bit integer with ating the status of
the RTDX channel. The value 0 corresponds o the RTDX _Channel_Enabled status,
indicates at enabled. The s to the status
RTDX_Channel_Disable, and it indicates that the channel is enabled and the value 2
corresponds to the Unknown status indicates nnel can not be
defined.

 specific states design
 t

th the channel is value 1 correspond

that the status of cha

 Output “er or outputs con n. The elements
that constitute output “error out” are:

r out” is a cluster of taining errors informatio

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

 The subVI RTDX_Read.vi is a polymorphic VI that reads arrays and single or double
precision floating-point numbers, 8-, 16-, 32-bit signed or unsigned integers from a RTDX

ad.vi co at are presented in Table 8 and
ill e

2.3.4 RTDX_Read.vi

channel. The RTDX_Re
w

nsists of a group of subVIs th
 b decribed in detail shortly.

Icon Name Icon Name

RTDX_Read_F4.vi

RTDX_Read_SA_F4.vi

RTDX_Read_F8.vi

RTDX_Read_SA_F8.vi

RTDX_Read_I1.vi

RTDX_Read_SA_I1.vi

RTDX_Read_I2.vi

RTDX_Read_SA_I2.vi

RTDX_Read_I4.vi

RTDX_Read_SA_I4.vi

RTDX_Read_UI1.vi

RTDX_Read_SA_UI1.vi

RTDX_Read_UI2.vi

RTDX_Read_SA_UI2.vi

LabVIEW to CCS Link 29

Icon Name Icon Name

RTDX_Read_UI4.vi

RTDX_Read_SA_UI4.vi

TDX_

 The subVI RTDX_Read_F4.vi, shown in Figure 32, reads 32-bit (4 bytes), single
precisio float input “Channel”.

error in

ut
Channel Data
Timeout

Table 8. The subVIs of the RTDX_Read.vi

R Read_F4.vi

n ing-point numbers from the RTDX channel indicating by the

 CCS In CCS O

error out

Figure 32. The RTDX_Read_F4.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32 aximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
s passed and the read

process has not been completed, an error occurs. Because of the fact that many

imeout” may have to be increased. Its default value is 10 sec (10000
msec).

-bit integer, and it defines the m

been completed successfully. If this maximum time period ha

processes related to CCS and board communication are depended on the user’s pc, the
values of input “T

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 ut “Data” is a 32-bit, single precision floating-point number showing the content

of th s

Outp
e pecific RTDX channel.

 Out t rrors information. The elements
that constitute output “error out” are:

pu “error out” is a cluster of outputs containing e

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

TDX_Read_F8.vi

R

30 2. Description of subVIs in LabVIEW to CCS Link

 The subVI RTDX_Read_F8.vi, shown in Figure 33, reads 64-bit (8 bytes) double
precisio DX channel indicating by the input “Channel”.

error in

n floating-point numbers from the RT

 CCS In CCS Out

error ou
Channel Data
Timeout t

Figure 33. The RTDX_Read_F8.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32-bit integer and it defines the maximum time period in msec,

nt the read process has
been completed successfully. If this maximum time period has passed and the read

o CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

from the moment the execution of the VI started till the mome

process has not been completed, an error occurs. Because of the fact that many
processes related t

msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit inte

ger showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

 Out t showing the content
of th s

pu “Data” is a 64-bit, double precision, floating point number
e pecific RTDX channel.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RT X

 The subV) , signed integers
from the RT X

 CCS In CCS Out

D _Read_Ι1.vi

I RTDX_Read_Ι1.vi, shown in Figure 34, reads 8-bit (1 byte
D channel indicating by the input “Channel”.

error out
error in

Channel Data
Timeout

Figure 34. The RTDX_Read_Ι1.vi

LabVIEW to CCS Link 31

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel”is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32-bit integer and it defines the maximum time period in msec,

nt the read process has
been completed successfully. If this maximum time period has passed and the read

o CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

from the moment the execution of the VI started till the mome

process has not been completed, an error occurs. Because of the fact that many
processes related t

msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit inte

ger showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

 Out t the specific RTDX
cha e

pu “Data” is an 8-bit, signed integer showing the content of
nn l.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RT X

 The s b (2 bytes), signed
integers fro t

D _Read_Ι2.vi

u
m he RTDX channel indicating by the input “Channel”.

VI RTDX_Read_Ι2.vi, shown in Figure 35, reads 16-bit

error out

CCS In

error in

CCS Out
Channel Data
Timeout

Figure 35 The RTDX_Read_Ι2.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a Str RTDX channel from which the ing, defining the name of the
data will be read.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has

32 2. Description of subVIs in LabVIEW to CCS Link

een completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

been completed successfully. If this maximum time period has passed and the read
process has not b

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and

shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ut “CCS Out” is a cluster containing information about CCS.

Outp

 Out t of the specific RTDX
cha e

pu “Data” is a 16-bit, signed integer showing the content
nn l.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX

 The s bV t, signed integers (4

l”.

CCS In CCS Out
Channel Data

_Read_Ι4.vi

u I RTDX_Read_Ι4.vi, shown in Figure 36 reads 32-bi
bytes) from

 the RTDX channel indicating by the input “Channe

error out
error in

Timeout

Figure 36. The RTDX_Read_Ι4.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has

een completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

been completed successfully. If this maximum time period has passed and the read
process has not b

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

LabVIEW to CCS Link 33

he execution of this specific VI. The elements that constitute input “error in”

are:

Input “error in” is a cluster of inputs describing the error that may have occurred
before t

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Out t S.

pu “CCS Out” is a cluster containing information about CC

 Output “Data” is a 32-bit, signed integer showing the content of the specific RTDX
channel.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Re _

The subVI RTDX_Read_UΙ1.vi, shown in Figure 37, reads 8-bit (1 byte), unsigned
 channel indicating by the input “Channel”.

ad UΙ1.vi

integer from the RTDX

error out

CCS In CCS Out
Channel Data
Timeout

 error in

Figure 37. The RTDX_Read_UΙ1.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

34 2. Description of subVIs in LabVIEW to CCS Link

 Output “Data” is an 8-bit, unsigned integer showing the content of the specific RTDX

channel.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

TDX_Read_UΙ2.vi

The subVI RTDX_Read_UΙ2.vi, shown in Figure 38, reads 16-bit, unsigned integers (2

R

bytes) from the RTDX channel indicating by the input “Channel”.

error out

CCS In

error in

CCS Out
Channel Data
Timeout

Figure 38. The RTDX_Read_UΙ2.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the

data will be read.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is a 16-bit, unsigned integer showing the content of the specific RTDX

channel.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.

LabVIEW to CCS Link 35

 Output “source” is a String describing an error.

TDX_Read_UΙ4.vi

The subVI RTDX_Read_UΙ4.vi, shown in Figure 39, reads 32-bit, unsigned integers (4

R

bytes) from the RTDX channel indicating by the input “Channel”.

error out

CCS In

error in

CCS Out
Channel Data
Timeout

Figure 39. The RTDX_Read_UΙ4.vi

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is a 32-bit, unsigned integer showing the content of the specific RTDX

channel.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_F4.vi

 The subVI RTDX_Read_SA_F4.vi, shown in Figure 40, reads arrays consisting of 32-
bit (4 bytes), single precision, floating-point numbers from the RTDX channel indicating by
he input “Channel”. t

36 2. Description of subVIs in LabVIEW to CCS Link

error out

CCS In

error in

CCS Out
Channel Data
Timeout

Figure 40. The RTDX_Read_SA_F4.vi

 Input “CCS In” is a cluster containing information about CCS.

 a String, defining the name of the RTDX channel from which the
data will be read.

Input “Channel” is

f input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values o

 execution of this specific VI. The elements that constitute input “error in”

are:

Input “error in” is a cluster of inputs describing the error that may have occurred
before the

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 int numbers

and comprises the contents of the specific RTDX channel.

Output “Data” is an array consisting of 32-bit, single precision floating-po

 uts containing errors information. The elements Output “error out” is a cluster of outp
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

TDX_Read_SA_F8.vi

ng of 64-
it (8 bytes), double precision floating-point numbers from the RTDX channel indicating by

the input “Channel”.

t

R

 The subVI RTDX_Read_SA_F8.vi, shown in Figure 41, reads arrays consisti
b

error out
error in

Channel Data
Timeout

CCS In CCS Ou

Figure 41. The RTDX_Read_SA_F8.vi

LabVIEW to CCS Link 37

 Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

mpleted successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many

).

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been co

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec

 Inpu “ at may have occurred
befo that constitute input “error in”
are:

t error in” is a cluster of inputs describing the error th
re the execution of this specific VI. The elements

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 of 64-bit (8 bytes), double precision floating-

nnel.

Output “Data” is an array consisting
point numbers and comprises the contents of the specific RTDX cha

 Out t ors information. The elements
that constitute output “error out” are:

pu “error out” is a cluster of outputs containing err

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_Ι1.vi

 The subVI RTDX_Read_SA_Ι1.vi, shown in Figure 42, reads arrays consisting of 8-bit,
signed integers (1 byte) from the RTDX channel indicating by the input “Channel”.

t
Channel Data

 CCS In CCS Ou

error out
error in

Timeout

Figure 42. The RTDX_Read_SA_Ι1.vi

 Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

mpleted successfully. If this maximum time period has passed and the read

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been co

38 2. Description of subVIs in LabVIEW to CCS Link

process has not been completed, an error occurs. Because of the fact that many

).

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec

 Inpu “ at may have occurred
befo that constitute input “error in”
are:

t error in” is a cluster of inputs describing the error th
re the execution of this specific VI. The elements

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 g of 8-bit, signed integers and comprises the

Output “Data” is an array consistin
contents of the specific RTDX channel.

 Out t ors information. The elements
that constitute output “error out” are:

pu “error out” is a cluster of outputs containing err

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_Ι2.vi

 The subVI RTDX_Read_SA_Ι2.vi, shown in Figure 43, reads arrays consisting of 16-

it, signed integers (2 bytes) fr y the input “Channel”. b

om the RTDX channel indicating b

 CCS In CCS Out

error out
error in

Channel Data
Timeout

Figure 43. The RTDX_Read_SA_Ι2.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 imeout” is a 32-bit integer, and it defines the maximum time period in msec,

ss on the user’s pc, the
valu s lue is 10 sec (10000
msec).

Input “T
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
proce es related to CCS and board communication are depended

 vae of input “Timeout” may have to be increased. Its default

 Input “error in” is a cluster of inputs describing the error that

before the execution of this specific VI. The elements that constit
may have occurred
ute input “error in”

are:

LabVIEW to CCS Link 39

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ing information about CCS.

Output “CCS Out” is a cluster contain

 Out t s and comprises the
con nt

pu “Data” is an array consisting of 16-bit, signed integer
te s of the specific RTDX channel.

 Output “error out” i

that constitute outpu
s a cluster of outputs containing errors information. The elements
t “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_Ι4.vi

 The subVI RTDX_Read_SA_Ι4.vi, shown in Figure 44, reads arrays consisting of 32-
bit, signed integers (4 bytes) f y the input “Channel”. rom the RTDX channel indicating b

 CCS In CCS Out

error out
error in

Timeout
Channel Data

Figure 44. The RTDX_Read_SA_Ι4.vi

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data will be read.

 imeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has

sses related to CCS and board communication are depended on the user’s pc, the
valu s lue is 10 sec (10000
msec).

Input “T

been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
proce

e of input “Timeout” may have to be increased. Its default va

 Input “error in” is a cluster of inputs describing the error that may have occurred
ute input “error in”

are:
before the execution of this specific VI. The elements that constit

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ing information about CCS.

Output “CCS Out” is a cluster contain

 Out t s and comprises the
con nt

pu “Data” is an array consisting of 32-bit, signed integer
te s of the specific RTDX channel.

40 2. Description of subVIs in LabVIEW to CCS Link

 Output “error out” i
that constitute outpu

s a cluster of outputs containing errors information. The elements
t “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_UΙ1.vi

T arrays consisting of 8-
it (b e input “Channel”.

CCS Out
Channel Data
Timeout

 he subVI RTDX_Read_SA_UΙ1.vi, shown in Figure 45, reads

1 yte), unsigned integers from the RTDX channel indicating by thb

error out

CCS In

error in

Figure 45. The RTDX_Read_SA_UΙ1.vi

Input “CCS In” is a cluster containing information about CCS.

l be read.

Input “Channel” is a String, defining the name of the RTDX channel from which the
data wil

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been ompleted successfully. If this maximum time period has p

of
c assed and the read

proc ss the fact that many
proc ss ed on the user’s pc, the
valu s s default value is 10 sec (10000

e has not been completed, an error occurs. Because
e depende es related to CCS and board communication ar

e of input “Timeout” may have to be increased. It
msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Out t p “CCS Out” is a cluster containing information au bout CCS.

 Output “Data” is an array consisting of 8-bit, unsigned integers and comprises the

ific RTDX channel. contents of the spec

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

LabVIEW to CCS Link 41

RTDX_Read_SA_UΙ2.vi

 T rrays consisting of 16-
it, unsigned integers (2 bytes) from the RTDX channel indicating by the input “Channel”.

CCS Out

Channel Data

he subVI RTDX_Read_SA_UΙ2.vi, shown in Figure 46, reads a

b

 CCS In

error out
error in

Timeout

Figure 46. The RTDX_Read_SA_UΙ2.vi

Input “CCS In” is a cluster containing information about CCS.

 hannel” is a String, defining the name of the RTDX channel from which the
data will be read.

Input “C

 the moment the execution of the VI started till the moment the read process has

bee c assed and the read
proc ss of the fact that many
proc ss e depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from

n ompleted successfully. If this maximum time period has p
e has not been completed, an error occurs. Because
e es related to CCS and board communication ar

msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.

Input “source” is a String describing an error.

 Out t out CCS. pu “CCS Out” is a cluster containing information ab

 Output “Data” is an array c
contents of the speci

onsisting of 16-bit, unsigned integers and comprises the
fic RTDX channel.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a

32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Read_SA_UΙ

 The subVI R D vi, shown in F consisting of 32-
bit, unsigned integers (4 bytes) from the RTDX channel indicating by the input “Channel”.

4.vi

T X_Read_SA_UΙ4. igure 47, reads arrays

42 2. Description of subVIs in LabVIEW to CCS Link

CCS In

error in

CCS Out
Data

error out
Channel
Timeout

e RTDX_Rea _

Figure 47. Th d SA_UΙ4.vi

 Input “CC In ing inform i

S ” is a cluster contain at on about CCS.

 Input “Ch ne ing the name from which the
data will be read.

an l” is a String, defin of the RTDX channel

 Input “Timeout” is a 32-bit integer, and it
from the mome

defines the maximum time period in msec,
nt the execution of the VI started till the moment the read process has

s of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
value

 Input “error in” is a cl error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

uster of inputs describing the

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is an array consisting of 32-bit, unsigned integers and comprises the

contents of the specific RTDX channel.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.5

 The s V nd single or double
precision f a integers to a RTDX
channel. Th R at are presented in Table 9 and

ill be decribed in detail shortly.

RTDX_Write.vi

ub I RTDX_Write.vi is a polymorphic VI that writes arraysa
lo ting-point numbers, 8-, 16-, 32-bit signed or unsigned
e TDX_Write.vi consists of a group of subVIs th

w

Icon Name Icon Name

RTDX_Write_F4.vi RTDX_Write_SA_F4.vi

RTDX_Write_F8.vi

RTDX_Write_SA_F8.vi

LabVIEW to CCS Link 43

Icon Name Icon Name

RTDX_Write_I1.vi

RTDX_Write_SA_I1.vi

RTDX_Write_I2.vi

RTDX_Write_SA_I2.vi

RTDX_Write_I4.vi

RTDX_Write_SA_I4.vi

RTDX_Write_UI1.vi

RTDX_Write_SA_UI1.vi

RTDX_Write_UI2.vi

RTDX_Write_SA_UI2.vi

RTDX_Write_UI4.vi

RTDX_Write_SA_UI4.vi

Table 9. The subVIs of theRTDX_Write.vi

_Write_F4.vi

he subVI RTDX_Write_F4.vi, shown in Figure 48, writes arrays that contain 32-bit (4
single precision floating-point numbers to the RTDX channel indicating by the input
el”.

RTDX

 T
bytes),
“Chann

Data

error out

CCS In CCS Out
Channel

error in

Timeout

Figure 48. The RTDX_Write_F4.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has

s lue is 10 sec (10000
msec).

been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
value of input “Timeout” may have to be increased. Its default va

 Inpu “ ut CCS. t CCS In” is a cluster containing information abo

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be written.

 ontaining the data
t i

Input “Data” is a 32-bit, single precision, floating point number, c
tha w ll be written to the RTDX channel.

 Inpu “ error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

t error in” is a cluster of inputs describing the

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

44 2. Description of subVIs in LabVIEW to CCS Link

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

_Write_F8.vi

RTDX

 The subVI RTDX_Write_F8.vi, shown in Figure 49 writes 64-bit (8 bytes), double
recision floating-point numbers to the RTDX channel indicating by the input “Channel”.

error in
Data

Timeout

p

error out

CCS In CCS Out
Channel

Figure 49. The RTDX_Write_F8.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
proce has bot been completed an error occurs. Because of

ed
ss the fact that many

proc ss on the user’s pc, the
valu s value is 10 sec (10000
msec).

e es related to CCS and board communication are depend
s defaulte of input “Timeout” may have to be increased. It

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be written.

 Inpu “
will be wr

t Data” is 64-bit, single precision floating-point nu
itten to the RTDX channel.

 mber, containing the data that

 Input “error in” is a cluster of inputs describing the error that may have occurred

 of this specific VI. The elements that constitute input “error in”
are:
before the execution

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.

LabVIEW to CCS Link 45

 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

_Write_Ι1.vi

he subV

RTDX

T I RTDX_Write_Ι1.vi, shown in Figure 50, writes 8-bit, signed integers (1
yte to

Channel
Data

b) the RTDX channel indicating by the input “Channel”.

CCS In CCS Out

Timeout

error out
error in

Figure 50. The RTDX_Write_Ι1.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
proc ss the fact that many
proc ss ed on the user’s pc, the
valu s s default value is 10 sec (10000
msec).

e has bot been completed an error occurs. Because of
e es related to CCS and board communication are depend
e of input “Timeout” may have to be increased. It

 Input “CCS In” is a cluster containing information about CCS.

 the name of the RTDX channel in which data

Input “Channel” is a String, defining
will be written.

 Inpu “ data that will be written to the
RTDX channel.

t Data” is an 8-bit, signed integer, containing the

 Input “error in” is a cluster of inputs describing the error that may have occurred

 of this specific VI. The elements that constitute input “error in” before the execution
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

Write

TDX Ι2.vi R

46 2. Description of subVIs in LabVIEW to CCS Link

 T bit, signed integers (2

ytes) to the RTDX channel indicating by the input “Channel”.

CCS In

error in

CCS Out
Timeout

he subVI RTDX_Write_Ι2.vi, shown in Figure 51, writes 16-
b

error out
Channel

Data

Figure 51. The RTDX_Write_I2.vi

from th he write process has
bee c assed and the write
proc ss at many
processes related to CCS and board communi

ue is 10 sec (10000
msec).

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
 e moment the execution of the VI started till the moment t

s pn ompleted successfully. If this maximum time period ha
ecause of the fact the has bot been completed an error occurs. B

cation are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default val

 Input “CCS In” is a cluster containing information about CCS.

 Inpu “ nel in which data

will e
t Channel” is a String, defining the name of the RTDX chan

 b written.

 Input “Data” is a 16-bit, signed integer, containing the data that will be written to the
RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

T X

T
bytes) to the RTDX channel indicating by the input “Channel”.

R D _Write_Ι4.vi

 he subVI RTDX_Write_Ι4.vi, shown in Figure 52, writes 32-bit, signed integers (4

LabVIEW to CCS Link 47

error in

Timeout

error out

CCS In CCS Out
Channel

Data

Figure 52. The RTDX_Write_I4.vi

 Input “Tim aximum time period in msec,
e write process has

mmunication are depended on the user’s pc, the
e is 10 sec (10000

sec).

eout” is a 32-bit integer, and it defines the m
from the moment the execution of the VI started till the moment th
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board co
values of input “Timeout” may have to be increased. Its default valu
m

 Input “CCS In” is a cluster containing information about CCS.

will be written.
Input “Channel” is a String, defining the name of the RTDX channel in which data

 Input “Data” is a 32-bit, signed integer, containing the data that will be written to the

RTDX channel.

 Input “error in” is a cluster of inputs escribing the error that may have occurred
before the execution of hat constitute input “error in”
are:

d
 this specific VI. The elements t

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

stitute output “error out” are:

Output “error out” is a cluster of outputs containing errors information. The elements
that con

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RT X

The subVI RTDX_Write_UΙ1.vi, shown in Figure 53, writes 8-bit (1 byte), unsigned
inte r

D _Write_UΙ1.vi

ge s to the RTDX channel indicating by the input “Channel”.

error out
Channel
CCS In CCS Out

Timeout

error in
Data

Figure 53. The RTDX_Write_UΙ1.vi

48 2. Description of subVIs in LabVIEW to CCS Link

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

aximum time period has passed and the write
e fact that many

proc ss on the user’s pc, the
valu s default value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this m
process has bot been completed an error occurs. Because of th

e es related to CCS and board communication are depended
e of input “Timeout” may have to be increased. Its

 Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

 Input “Data” is an 8-bit, unsigned integer, containing the data that will be written to

the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

TDX_Write_UΙ2.vi

 The subVI RTDX_Write_UΙ2.vi, shown in Figure 54, writes 16-bit, unsigned integers (2

ytes) to the RTDX channel indicating by the input “Channel”.

CCS Out

R

b

 Timeout

error out
Channel
CCS In

error in
Data

Figure 54. The RTDX_Write_UΙ2.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

aximum time period has passed and the write
e fact that many

proc ss on the user’s pc, the

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this m
process has bot been completed an error occurs. Because of th

e es related to CCS and board communication are depended

LabVIEW to CCS Link 49

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be written.

 Input “Data” is a 16-bit, unsigned integer, containing the data that will be written to
the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 CCS Out” is a cluster containing information about CCS. Output “

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

T X

 T
bytes) t R

R D _Write_UΙ4.vi

he subVI RTDX_Write_UΙ4.vi, shown in Figure 55, writes 32-bit, unsigned integers (4
o the TDX channel indicating by the input “Channel”.

CCS In CCS O

Timeout

error out
error in

Data

ut
Channel

Figure 55. The RTDX_Write_UΙ4.vi

 e period in msec,
from th the write process has
bee c riod has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

eout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, and it defines the maximum tim
 e moment the execution of the VI started till the moment

n ompleted successfully. If this maximum time pe

values of input “Tim
msec).

 Input “CCS In” is a cluster containing information about CCS.

50 2. Description of subVIs in LabVIEW to CCS Link

 Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

 Input “Data” is a 32-bit, unsigned integer, containing the data that will be written to

the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 CCS Out” is a cluster containing information about CCS. Output “

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

T X

 The subVI RTDX_Write_SA_F4.vi, shown in Fi
32-bit (es annel indicating by
the input “C a

Data

Timeout

R D _Write_SA_F4.vi

gure 56, writes arrays that consist of
4 byt), single precision floating-point numbers to the RTDX ch

h nnel”.

error out

CCS In CCS Out
Channel

error in

Figure 56. The RTDX_Write_SA_F4.vi

 Inpu “ me period in msec,
from th moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many

o CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

t Timeout” is a 32-bit integer, and it defines the maximum ti
 e moment the execution of the VI started till the

processes related t

msec).

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the na
will be written.

me of the RTDX channel in which data

 Input “Data” is an array that consists of 32-bit, single precision floating-point numbers

containing the data that will be written to the RTDX channel.

LabVIEW to CCS Link 51

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 t” is a cluster containing information about CCS. Output “CCS Ou

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX_Wr te

T rays that consist of
4-b t annel indicating by
e p

i _SA_F8.vi

 he subVI RTDX_Write_SA_F8.vi, shown in Figure 57, writes ar

i (8 bytes), double precision floating-point numbers to the RTDX ch6
th in ut “Channel”.

error ou
error in

Data t
Channel
CCS In CCS Out

Timeout

Figure 57. The RTDX_Write_SA_F8.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

at many

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact th

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be written.

Input “Data” is an array that consists of 64-bit (8 bytes), double precision floating-
point numbers containing the data that will be written to the RTDX channel.

he execution of this specific VI. The elements that constitute input “error in”
are:

Input “error in” is a cluster of inputs describing the error that may have occurred
before t

 Input “status” is Boolean and shows if any error occurred.

52 2. Description of subVIs in LabVIEW to CCS Link

 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 uts containing errors information. The elements

that constitute output “error out” are:
Output “error out” is a cluster of outp

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

TDX_Wr te

T ys that consist of 8-
it, g

R

i _SA_Ι1.vi

b

he subVI RTDX_Write_SA_Ι1.vi, shown in Figure 58, writes arra
si ned integers (1 byte) to the RTDX channel indicating by the input “Channel”.

error ou
error in

Data t
Channel
CCS In CCS Out

Timeout

Figure 58. The RTDX_Write_SA_Ι1.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

at many

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact th

 Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

ritten to the RTDX channel.

Input “Data” is an array that consists of 8-bit, signed integers containing the data that
will be w

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 53

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

T X

 T
bit, sig Channel”.

error in

ut
Channel

Data

R

D _Write_SA_Ι2.vi

he subVI RTDX_Write_SA_Ι2.vi, shown in Figure 59, writes arrays that consist of 16-
ned integers (2 bytes) to the RTDX channel indicating by the input “

CCS In CCS O

Timeout

error out

Figure 59. The RTDX_Write_SA_Ι2.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

Input “Data” is an array that consists of 16-bit, signed integers containing the data that
will be written to the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred

stitute input “error in”
are:
before the execution of this specific VI. The elements that con

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 nformation about CCS. Output “CCS Out” is a cluster containing i

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

54 2. Description of subVIs in LabVIEW to CCS Link

T X

 T
bit, sig hannel”.

error in

ut
Channel

Data

R

D _Write_SA_Ι4.vi

he subVI RTDX_Write_SA_Ι4.vi, shown in Figure 60, writes arrays that consist of 32-
ned integers (4 bytes) to the RTDX channel indicating by the input “C

CCS In CCS O

Timeout

error out

Figure 60. The RTDX_Write_SA_Ι4.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this ma imum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to C pended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

x

CS and board communication are de

msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

 Input “Data” is an array that consists of 32-bit, signed integers containing the data that

will be written to the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS Out” is a cluster containing information about CCS.

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX

 The s V arrays that consist of

-bit (1 byt , g by the input “Channel”.

_W _SA_UΙ1.vi rite

u I RTDX_Write_SA_UΙ1.vi, shown in Figure 6
e) unsigned integers to the RTDX channel indicatin

b 1, writes
8

LabVIEW to CCS Link 55

CCS Out
Channel

Data

Timeout

error out

CCS In

error in

Figure 61. The RTDX_Write_SA_UΙ1.vi

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to C pended on the user’s pc, the
values of input “Time efault value is 10 sec (10000

CS and board communication are de
out” may have to be increased. Its d

msec).

Input “CCS In” is a cluster containing information about CCS.

Input “Channel” is a String, defining the name of the RTDX channel in which data
will be written.

 ata” is an array that consists of 8-bit, unsigned integers containing the data Input “D

that will be written to the RTDX channel.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

 t ation. The elements

that on
Outpu “error out” is a cluster of outputs containing errors inform

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

RTDX

 The s V arrays that consist of
16-bit, unsi ne ing by the input “Channel”.

in

CCS Out
Channel

ta

Timeout

_Write_SA_UΙ2.vi

ub I RTDX_Write_SA_UΙ2.vi, shown in Figure 62, writes
g d integers (2 bytes) to the RTDX channel indicat

error out

CCS In

error
Da

Figure 62. The RTDX_Write_SA_UΙ2.vi

56 2. Description of subVIs in LabVIEW to CCS Link

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be written.

 Input “Data” is an array that consists of 16-bit, unsigned integers containing the data
that will be written to the RTDX channel.

 “ may have occurred

befo tute input “error in”
are:

Input error in” is a cluster of inputs describing the error that
stire the execution of this specific VI. The elements that con

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS Out” is a cluster containing information about CCS.

that on
Output “error out” is a cluster of outputs containing errors information. The elements

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.

RTDX rite

 The s bV 3, writes arrays that consist of

2-bit, unsigned integers (4 bytes) to the RTDX channel indicating by the input “Channel”.

CCS In CCS Out
Timeout

Output “source” is a String describing an error.

_W _SA_UΙ4.vi

u I RTDX_Write_SA_UΙ4.vi, shown in Figure 6
3

error out
error in

Channel
Data

Figure 63. The RTDX_Write_SA_UΙ4.vi

 Input “T ut” is a 32 teger, and ines the m m time period in msec,
from the m ent the execution of the VI st d till the m nt the write process has
been complete f this maxim m ssed and the write
process has pleted an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

imeo
om

-bit in it def
arte

aximu
ome

d successfully. I u time period has pa
 bot been com

LabVIEW to CCS Link 57

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “CCS In” is a cluster containing information about CCS.

 Input “Channel” is a String, defining the name of the RTDX channel in which data

will be writt

en.

 Input “Data” is an array that consists of 32 bit containing the data
that will be written to the RTDX channel.

- , unsigned integers

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the exe ific VI. Th e te input “error in”
are:

cution of this spec e lements that constitu

 Input “status” is Boolean and shows f a i ny error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “ escribing an ror.

source” is a String d er

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.3.6 MEM_Get_Address.vi

The subVI MEM_Get_Address.vi, shown in Figure 64, locates the page and the address
n DSP me” is saved. The term

t in the CCS project. If
 i fo

mem r

2

o memory where the symbol indicated by the input “Symbol Na

bol means an array or variable of any type that has already been sesym
it s r an array the MEM_Get_Address.vi will return the page and address on DSP

o ywhere the first element of the array is saved. The symbol is suggested to be global.

error out

CCS In

error in

CCS Out
Symbol Name Page & Address

Figure 64. The MEM_Get_Address.vi

 Input “CCS In” is a cluster containing information about CCS.

Input “Symbol Name” is a String defining the name of the symbol. The symbol must
hav ale ready been set to the project otherwise an error will occur.

 Inpu “
before the e elements that constitute input “error in”
are:

t error in” is a cluster of inputs describing the error that may have occurred
 execution of this specific VI. Th

58 2. Description of subVIs in LabVIEW to CCS Link

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Out t S.

pu “CCS Out” is a cluster containing information about CC

 Output “Page & Address” is a cluster providing information for the page and address

tituted by the below elements:
in DSP memory where the symbol indicated by the input “Symbol Name” is saved.
Output “Page & Address” is cons

 Output “Page” is a 16-bit integer, showing the page of the DSP memory in
which the symbol is saved.

 Output “Address” is an unsigned integer in hexadecimal representation,

showing the address of the DSP memory where the symbol is saved.

 s a cluster of outputs containing errors information. The elements
that constitute output “error out” are:
Output “error out” i

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.

.3.7 MEM_Read.vi

M_Read.vi is a polymorphic VI having the capability to read rows of

Output “source” is a String describing an error.

2

The subVI ME
Strings, arrays and single or double precision floating-point numbers, 8-, 16-, 32-bit signed or
unsigned integers from the DSP memory by direct memory access. Τhe MEM_Read.vi
consists of subVIs that is presented in Table 10 and will be described shortly in detail.

Icon Name Icon Name

MEM_Read_F4.vi

MEM_Read_A_F4.vi

MEM_Read_F8.vi

MEM_Read_A_F8.vi

MEM_Read_I1.vi MEM_Read_A_I1.vi

MEM_Read_I2.vi

MEM_Read_A_I2.vi

MEM_Read_I4.vi

MEM_Read_A_I4.vi

MEM_Read_UI1.vi

MEM_Read_A_UI1.vi

MEM_Read_UI2.vi

MEM_Read_A_UI2.vi

MEM_Read_UI4.vi

MEM_Read_A_UI4.vi

MEM_Read_String.vi

Table10. The subVIs of the MEM_Read.vi

LabVIEW to CCS Link 59

ME _

 T bytes), single
precision fl at dicated
by the inpu

error in

M Read_F4.vi

he subVI MEM_Read_F4.vi, shown in Figure 65, reads 32-bit (4
o ing-point numbers starting from the DSP memory address and page in
t “Page & Address” by direct memory access.

error out

CCS In CCS Out
Timeout Data

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

Figure 65. Τhe MEM_Read_F4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

en completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not be

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Inpu “ the page and the
add ss lace. Input “Page &
Address” is constituted by the belo

t Page & Address” is a cluster providing information abo
ill take p

ut
re in DSP memory where the read operation w

w elements:
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a r code. 32-bit integer showing the erro
 Input “source” is a String describing an error.

 is a cluster that contains information relative to the

events that may happen to CCS.

Output “CCS_Event_Notif_Out”

 Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 32-bit, single precision floating-point number designating the
content of the DSP memory starting from the memory location indicated by the input
“Page & Number”.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

60 2. Description of subVIs in LabVIEW to CCS Link

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

MEM_

 The s V
numbers τ ν

e input “Pag

Read_F8.vi

ub I MEM_Read_F8.vi, shown in Figure 66, reads double precision floating-point
ω 64 bits (8 bytes) starting from the DSP memory address and page indicated by

e & Address” by direct memory access. th

CCS In CCS Out

CCS_Event_Notif_In CCS_Event_Notif_Out

error outPage & Address
Timeout Data

 error in

Figure 66. Τhe MEM_Read_F8.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read

mmunication are depended on the user’s pc, the
e is 10 sec (10000

msec).

process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board co
values of input “Timeout” may have to be increased. Its default valu

 Input “Page & Address” is a cluster providing information about the page and the
SP memory where the read operation will take place. Input “Page &

w elements:
address in D
Address” is constituted by the belo

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

LabVIEW to CCS Link 61

 Output “Data” is a 64-bit, double precision, floating point number designating the
content of the DSP memory starting from the memory location indicated by the input
“Page & Number”.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

Rea _Ι

MEM_

 The s V

om the DSP ted by the input “Page & Address” by direct
em r

d 1.vi

ub I MEM_Read_Ι1.vi, shown in Figure 67, reads 8-bit, signed integers (1 byte)
memory address and page indicafr

m o y access.

 CCS_Event_Notif_In CCS_Event_Notif_Out

error outPage & Address

CCS In CCS Out
Timeout Data

 error in

Figure 66. Τhe MEM_Read_Ι1.vi

 a cluster that contains information relative to the
events that may happen to CCS.
Input “CCS_Event_Notif_In” is

 Input “CCS In” is a cluster containing information about CCS.

 in msec,

from the moment the execution of the VI started till the moment the read process has

 error occurs. Because of the fact that many
 the user’s pc, the

valu s alue is 10 sec (10000
msec).

Input “Timeout” is a 32-bit integer, and it defines the maximum time period

been completed successfully. If this maximum time period has passed and the read
process has not been completed, an
processes related to CCS and board communication are depended on

e of input “Timeout” may have to be increased. Its default v

 Input “Page

address in DSP me
& Address” is a cluster providing information about the page and the

mory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an

the address of the DSP m
 unsigned integer in hexadecimal representation, showing

emory.

 Input “error in” is a cluster of inputs ay have occurred
before the execution of t that constitute input “error in”

 describing the error that m
his specific VI. The elements

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

62 2. Description of subVIs in LabVIEW to CCS Link

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is an 8-bit, signed integer designating the content of the DSP memory
location indicated by the input “Page & Number”..

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

EM_Read_

 T
bytes)
Addres d

tif_Out

M

I2.vi

he subVI MEM_Read_I2.vi, shown in Figure 68, reads 16-bit, signed integers (2
starting from the DSP memory address and page indicated by the input “Page &
s” by irect memory access.

CCS In CCS O

CCS_Event_Notif_In CCS_E

error out
error in

Page & Address

ut
Timeout Data

vent_No

Figure 68. Τhe MEM_Read_Ι2.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 nd it defines the maximum time period in msec,
m th e read process has

been c passed and the read
proc ss ecause of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

 “Timeout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, a
fro e moment the execution of the VI started till the moment th

 ompleted successfully. If this maximum time period has
e has not been completed, an error occurs. B

values of input
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of that constitute input “error in”
are:

this specific VI. The elements

LabVIEW to CCS Link 63

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “Data” is a 16-bit, signed integer designating the content of the DSP memory
starting from the memory location indicated by the input “Page & Number”.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

EM_Read_

 T
bytes)
Addres d

if_Out

M

I4.vi

he subVI MEM_Read_I4.vi, shown in Figure 69, reads 32-bit, signed integers (4
starting from the DSP memory address and page indicated by the input “Page &
s” by irect memory access.

 Event_Not
CCS In CCS O

CCS_Event_Notif_In CCS_

error out
error in

Page & Address

ut
Timeout Data

Figure 69. Τhe MEM_Read_Ι4.vi

events that may happen to CCS.
Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

 Input “CCS In” is a cluster containing information about CCS.

 nd it defines the maximum time period in msec,

m th e read process has
been c passed and the read
proc ss ecause of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

 “Timeout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, a
fro e moment the execution of the VI started till the moment th

 ompleted successfully. If this maximum time period has
e has not been completed, an error occurs. B

values of input
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory wh
Address” is constituted by the belo

ere the read operation will take place. Input “Page &
w elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

64 2. Description of subVIs in LabVIEW to CCS Link

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is a 32-bit, signed integer designating the content of the DSP memory

starting from the memory location indicated by the input “Page & Number”.

 ining errors information. The elements
that on
Output “error out” is a cluster of outputs conta

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 showing the error code. Output “code” is a 32-bit integer
 Output “source” is a String describing an error.

MEM_

 The s bV (1 byte), unsigned
integers from t t “Page & Address” by

irect mem y

Read_UΙ1.vi

u I MEM_Read_UΙ1.vi, shown in Figure 70, reads 8-
 the inpu

bit
he DSP memory address and page indicated by

or access. d

CCS In

CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Page & Address

CCS Out
Timeout Data

Figure 66. Τhe MEM_Read_UΙ1.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

 Inpu “ aximum time period in msec,
from the moment the execution of the VI started till the moment the read process has

d successfully. If this maximum time period has passed and the read
pleted, an error occurs. Because of the fact that many

t Timeout” is a 32-bit integer, and it defines the m

been complete
process has not been com
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

LabVIEW to CCS Link 65

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP m mory. e
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is an 8-bit, unsigned integer designating the content of the DSP

memory location indicated by the input “Page & Number”..

 ining errors information. The elements
that on
Output “error out” is a cluster of outputs conta

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 showing the error code. Output “code” is a 32-bit integer
 Output “source” is a String describing an error.

MEM_Read_UI2.vi

 The s V unsigned integers (2
bytes) start g by the input “Page &

ddress” by direct m

CCS_Event_Notif_Out

ub I MEM_Read_UI2.vi, shown in Figure 71, reads 16-bi
dicated

t,
in from the DSP memory address and page in

emory access. A

CCS In

CCS_Event_Notif_In

error out
error in

Data
Page & Address

CCS Out
Timeout

Figure 71. Τhe MEM_Read_UΙ2.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

 Inpu “ aximum time period in msec,
from the moment the execution of the VI started till the moment the read process has

uccessfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many

t Timeout” is a 32-bit integer, and it defines the m

been completed s

66 2. Description of subVIs in LabVIEW to CCS Link

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memo
Address” is constituted

ry where the read operation will take place. Input “Page &
 by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

hat may happen to CCS.
Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events t

 Output “CCS Out” is a cluster containing information about CCS.

 e DSP

mem r

Output “Data” is a 16-bit, unsigned integer designating the content of th
o y starting from the memory location indicated by the input “Page & Number”.

 Output containing errors information. The elements “error out” is a cluster of outputs
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

MEM_Rea _

 T s (4
ytes) starting from the DSP memory address and page indicated by the input “Page &

Add es

Data

CCS_Event_Notif_In CCS_Event_Notif_Out

d UI4.vi

he subVI MEM_Read_UI4.vi, shown in Figure 72, reads 32-bit, unsigned integer
b

r s” by direct memory access.

error out
error in

Page & Address

CCS In CCS Out
Timeout

Figure 72. Τhe MEM_Read_UΙ4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 pu “

In t CCS In” is a cluster containing information about CCS.

LabVIEW to CCS Link 67

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
t the execution of the VI started till the moment the read process has
successfully. If this maximum time period has passed and the read

from the momen
been completed
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory

.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

 “Data” is a 32-bit, unsigned integer designating the content of the DSP
memory starting from the memory location indicated by the input “Page & Number”.

Output

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 bing an error.

ME _

 T bV ng starting from the
DSP memo ” by direct memory
access. The u

Timeout Data
Page & Address

Output “source” is a String descri

M Read_String.vi

he su I MEM_Read_String.vi, shown in Figure 73, reads a stri
essry address and page indicated by the input “Page & Addr

 n mber of strings is defined by the input “Size”.

CCS In CCS Out

CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Size

Figure 73. Τhe MEM_Read_String.vi

68 2. Description of subVIs in LabVIEW to CCS Link

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

maximum time period has passed and the read
e fact that many

proc ss on the user’s pc, the
valu s default value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this
process has not been completed, an error occurs. Because of th

e es related to CCS and board communication are depended
e of input “Timeout” may have to be increased. Its

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs escribing the error that may have occurred
before the execution of hat constitute input “error in”
are:

 d
 this specific VI. The elements t

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Size” is a 32-bit integer designating the number of strings that will be read.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

 “Data” is a String designating the content of the DSP memory starting from the
memory location indicated by the input “Page & Number”. The number of strings that

Output

the output “Data” contains, is defined by the input “Size”.

 ining errors information. The elements
that on
Output “error out” is a cluster of outputs conta

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 showing the error code. Output “code” is a 32-bit integer
 Output “source” is a String describing an error.

MEM_

 The s V consisting of 32-bit
(4 bytes), s g P memory address and

age indica ed emory access. The number of
lements in the array is defined by the input “Size”.

Read_A_F4.vi

ub I MEM_Read_A_F4.vi, shown in Figure 74, reads arra
m the DS

ys
in le precision, floating-point numbers starting fro
t by the input “Page & Address” by direct mp

e

LabVIEW to CCS Link 69

CCS Out
_Event_Notif_In CCS_Event_Notif_Out CCS

error out
error in

Timeout Data
Page & Address

Size

CCS In

Figure 74. The MEM_Read_A_F4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 ation about CCS. Input “CCS In” is a cluster containing inform

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
m thfro e moment the execution of the VI started till the moment th

be pa
e read process has

en c ssed and the read
proc ss the fact that many
proc ss depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

 ompleted successfully. If this maximum time period has
ecause ofe has not been completed, an error occurs. B

e es related to CCS and board communication are

msec).

Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” i

s a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a code. 32-bit integer showing the error
 Input “source” is a String describing an error.

 esignating the number of elements in the array that Input “Size” is a 32-bit integer d

will be read.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

d by the input “Page & Number”. The number of elements in the array is

Output “Data” is an array consisting of 32-bit, single precision floating-point numbers
designating the content of the DSP memory starting from the memory location
indicate
defined by the input “Size”.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

70 2. Description of subVIs in LabVIEW to CCS Link

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 bing an error.

ME _

 T V consisting of 64-bit,
single prec io address and page
indicated b th number of elements in

e array is ef

CCS Out
Timeout Data

Output “source” is a String descri

M Read_A_F8.vi

he sub I MEM_Read_A_F8.vi, shown in Figure 75, reads arrays
oryis n floating-point numbers starting from the DSP mem

cess. They e input “Page & Address” by direct memory ac
 d ined by the input “Size”. th

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Page & Address

Size

CCS In

Figure 75. The MEM_Read_A_F8.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 nd it defines the maximum time period in msec,
m th e read process has

been c passed and the read
proc ss ecause of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

Timeout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, a
fro e moment the execution of the VI started till the moment th

 ompleted successfully. If this maximum time period has
e has not been completed, an error occurs. B

values of input “
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

LabVIEW to CCS Link 71

hat may happen to CCS.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events t

 Output “CCS Out” is a cluster containing information about CCS.

 precision floating-point numbers των

64 b ts ocation
indi t
defined

Output “Data” is an array consisting of double
i designating the content of the DSP memory starting from the memory l
ca ed by the input “Page & Number”. The number of elements in the array is

 by the input “Size”.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

The subVI MEM_Read_A_I1.vi, shown in Figure 76, reads arrays consisting of 8-bit,
ign d

inpu “
efined

M M Read_A_I1.vi

s e integers (1 byte) starting from the DSP memory address and page indicated by the

t Page & Address” by direct memory access. The number of elements in the array is
 by the input “Size”. d

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out

CCS In

error in

CCS Out
Timeout Data

Page & Address

Size

Figure 76. The MEM_Read_A_I1.vi

 on relative to the
even s

Input “CCS_Event_Notif_In” is a cluster that contains informati
t that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

ay have to be increased. Its default value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” m

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP m mory. e
 Input “Address” cimal representation, showing

the address of the DSP memory.
 is an unsigned integer in hexade

72 2. Description of subVIs in LabVIEW to CCS Link

 inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
Input “error in” is a cluster of

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Input “Size” is a 32-bit integer designating the number of elements in the array that
will be read.

 “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output

Output “CCS Out” is a cluster containing information about CCS.

 Out t content
of t D
Numbe array is defined by the input “Size”.

pu “Data” is an array consisting of 8-bit, signed integers designating the
he SP memory starting from the memory location indicated by the input “Page &

r”. The number of elements in the

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

The subVI MEM_Read_A_I2.vi, shown in Figure 77, reads arrays consisting of 16-bit,
ign d

inpu “
efined

M M Read_A_I2.vi

s e integers (2 bytes) starting from the DSP memory address and page indicated by the

t Page & Address” by direct memory access. The number of elements in the array is
 by the input “Size”. d

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out

CCS In

error in

CCS Out
Timeout Data

Page & Address

Size
Figure 77. The MEM_Read_A_I2.vi

 uster that contains information relative to the

Input “CCS_Event_Notif_In” is a cl
events that may happen to CCS.

 Inpu “ t CCS. t CCS In” is a cluster containing information abou

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

LabVIEW to CCS Link 73

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memo
Address” is constituted

ry where the read operation will take place. Input “Page &
 by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

ead.
Input “Size” is a 32-bit integer designating the number of elements in the array that
will be r

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Out t

pu “CCS Out” is a cluster containing information about CCS.

 Output 16-bit, signed integers designating the content

 “Data” is an array consisting of
of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

 t ation. The elements
that on
Outpu “error out” is a cluster of outputs containing errors inform

 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

EM_Read_A_I4.vi

 The subVI MEM_Read_A_I4.vi, shown in Figure 78, reads arrays consisting of 32-bit,
igned integers (4 bytes) starting from the DSP memory address and page indicated by the

inpu “ ents in the array is
efined by the input “Size”.

M

s
t Page & Address” by direct memory access. The number of elem

d

CCS In CCS Out

Timeout Data

CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Page & Address

Size

Figure 78. The MEM_Read_A_I4.vi

74 2. Description of subVIs in LabVIEW to CCS Link

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
ppen to CCS. events that may ha

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memo l take place. Input “Page &
Address” is constituted by the below elements:

ry where the read operation wil

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ize” is a 32-bit integer designating the number of elements in the array that

will be read.

Input “S

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Out t

pu “CCS Out” is a cluster containing information about CCS.

 Output “Data” is an array consisting of 32-bit, signed integers designating the content

of the DSP memory starting from the memory location indicated by the input “Page &
Number”. The number of elements in the array is defined by the input “Size”.

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

The subVI MEM_Read_A_UI1.vi, shown in Figure 79, reads arrays consisting of 8-bit
 b te ge indicated by the

M M Read_A_UI1.vi

(1 y), unsigned integers starting from the DSP memory address and pa

LabVIEW to CCS Link 75

put “Page & Address” by direct memory access. The number of elements in the array is
defi ed

CCS Out

in
n by the input “Size”.

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Timeout Data
Page & Address

CCS In

Size

i Figure 79. The MEM_Read_A_UI1.v

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
ppen to CCS. events that may ha

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communi
values of input “Timeo efault value is 10 sec (10000

cation are depended on the user’s pc, the
ut” may have to be increased. Its d

msec).

 uster providing information about the page and the
place. Input “Page &

Input “Page & Address” is a cl
address in DSP memory where the read operation will take
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ay that

will e

Inpu “t Size” is a 32-bit integer designating the number of elements in the arr
 b read.

 Output ster that contains information relative to the

 “CCS_Event_Notif_Out” is a clu
events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

 Out t ignating the content
of t D d by the input “Page &
Num e ed by the input “Size”.

pu “Data” is an array consisting of 8-bit, unsigned integers
 indicate

 des
he SP memory starting from the memory location

b r”. The number of elements in the array is defin

76 2. Description of subVIs in LabVIEW to CCS Link

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

 T
unsigne

put “
efi ed

t

Size

M

M Read_A_UI2.vi

he subVI MEM_Read_A_UI2.vi, shown in Figure 80, reads arrays consisting of 16-bit,
d integers (2 bytes) starting from the DSP memory address and page indicated by the
Page & Address” by direct memory access. The number of elements in the array is in

d n by the input “Size”.

error ou
error in

Page & Address t

CCS In CCS Out
Timeout Data

CCS_Event_Notif_In CCS_Event_Notif_Ou

Figure 80. The MEM_Read_A_UI2.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “T ut” is a 32 teger, and ines the m m time period in msec,

from the moment the execution of the VI started till the moment the read process has
been compl e this maximum ssed and the read
process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

imeo -bit in it def aximu

et d successfully. If time period has pa

 Input “Page & cluster prov in t the page and the
address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

 Address” is a id g information abou

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer i entation, showing

the address of the DSP memory.

n hexadecimal repres

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Size” is a 32-bit integer designating the number of elements in the array that

will be read.

LabVIEW to CCS Link 77

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is an array consisting of

content of the DSP mem location indicated by the input

 16-bit, unsigned integers designating the
ory starting from the memory

“Page & Number”. The number of elements in the array is defined by the input “Size”.

 outputs containing errors information. The elements Output “error out” is a cluster of
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

Read_A_UI4.vi

he subVI MEM_Read_A_UI4.vi, shown in Figure 81 reads arrays consisting of 32-bit,

MEM_

 T
unsigned integers (4 bytes) starting from the DSP memory address and page indicated by the

put “Page & Address” by direct memory access. The number of elements in the array is
defi ed

in
n by the input “Size”.

 CCS_Event_Notif_In

error out
error in

Timeout Data
Page & Address

CCS In CCS Out
CCS_Event_Notif_Out

Size

Figure 81. The MEM_Read_A_UI4.vi

 “
eve s

Input CCS_Event_Notif_In” is a cluster that contains information relative to the
nt that may happen to CCS.

 Inpu “ ut CCS. t CCS In” is a cluster containing information abo

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the read process has
been completed successfully. If this maximum time period has passed and the read

ave to be increased. Its default value is 10 sec (10000

process has not been completed, an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may h
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the read operation will take place. Input “Page &
Address” is constituted by the below elements:

Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

78 2. Description of subVIs in LabVIEW to CCS Link

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Size” is a 32-bit integer designating the number of elements in the array that

will be read.

 Output “CCS_Event_Notif_Out” s information relative to the
events that may happen t

is a cluster that contain
o CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Data” is an array consisting of 32-bit, unsigned in

content of the DSP memory starting from the memory location
tegers designating the
 indicated by the input

“Page & Number”. The number of elements in the array is defined by the input “Size”.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.

 Th ows of
strings, arra s
unsigned in
ubVIs that is p escribed shortly in detail.

8 MEM_Write.vi

e s bVu I MEM_Write.vi is a polymorphic VI having the capability to write r
y and single or double precision floating-point numbers, 8-, 16-, 32-bit signed or
tegers to DSP memory by direct memory access. Τhe MEM_Write.vi consists of

resented in Table 11 and will be ds

Icon Name Icon Name

MEM_Write_F4.vi

MEM_Write_A_F4.vi

MEM_Write_F8.vi MEM_Write_A_F

8.vi

MEM_Write_I1.vi

MEM_Write_A_I1.vi

MEM_Write_I2.vi MEM_Write_A_I2.vi

MEM_Write_I4.vi

MEM_Write_A_I4.vi

MEM_Write_UI1.vi

MEM_Write_A_UI1.vi

MEM_Write_UI2.vi

MEM_Write_A_UI2.vi

LabVIEW to CCS Link 79

Icon Name Icon Name

MEM_Write_UI4.vi

MEM_Write_A_UI4.vi

MEM_Write_String.vi

Table 11. The subVIs of the MEM_Write.vi

e subVI MEM_Write_F4.vi, shown in Figure 82, writes 32-bit (4 bytes), single
recision floating-point numbers starting from the DSP memory address and page indicated

by the input “Page & Address” by direct memory access.

CCS_Event_No vent_Notif_Out

Data

MEM_Write_F4.vi

 Th
p

error out

CCS In

error in

CCS Out
Timeout

Page & Address

tif_In CCS_E

Figure 82. The MEM_Write_F4.vi

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

Input “CCS In” is a cluster containing information about CCS.

 imeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has

tion are depended on the user’s pc, the
valu s (10000
msec).

Input “T

been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communica

e of input “Timeout” may have to be increased. Its default value is 10 sec

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

80 2. Description of subVIs in LabVIEW to CCS Link

 Input “Data” is a 32-bit, single precision floating-point number that will be written to

the DSP memory starting from the memory location indicated by the input “Page &
Number”.

 Out t ation relative to the
eve s

pu “CCS_Event_Notif_Out” is a cluster that contains inform
nt that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32

-bit integer showing the error code.
 Output “source” is a String describing an error.

MEM_Write_F8.vi

 The subVI MEM_Write_F8.vi, shown in Figure 83 writes 64-bit (8 bytes), double
precision floating-point numbers address and page indicated

y the input “Page & Address” b

Data

starting from emory
y direct memory access.

 the DSP m
b

CCS In

CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Page & Address

CCS Out
Timeout

Figure 83. The MEM_Write_F8.vi

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 CS In” is a cluster containing information about CCS. Input “C

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
proc ss t many
proc ss
values e increased. Its default value is 10 sec (10000
msec).

e has bot been completed an error occurs. Because of the fact tha
e es related to CCS and board communication are depended on the user’s pc, the

of input “Timeout” may have to b

ss in DSP memory where the write operation will take place. Input “Page &

Add es

Input “Page & Address” is a cluster providing information about the page and the
addre

r s” is constituted by the below elements:
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

LabVIEW to CCS Link 81

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 ion, floating-point numberthat will be written to

the input “Page &
Num e

Input “Data” is a 64-bit, single precis
the DSP memory starting from the memory location indicated by

b r”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
y happen to CCS. events that ma

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” i

ME _

T igned integers (1 byte)
 th p ber” by direct memory

cce s.

s a String describing an error.

M Write_I1.vi

 he subVI MEM_Write_I1.vi, shown in Figure 84, writes 8-bit, s

e age and memory location indicated by the input “Page & Numto
a s

error out

CCS In

error in

CCS Out
Timeout

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

Data

Figure 84. The MEM_Write_I1.vi

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Inpu “

t CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

ss has bot been completed an error occurs. Because of the fact that many
proc ss on the user’s pc, the
valu s value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
proce

e es related to CCS and board communication are depended
e of input “Timeout” may have to be increased. Its default

82 2. Description of subVIs in LabVIEW to CCS Link

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is

from the memo
 an 8-bit, signed integer that will be written to the DSP memory starting
ry location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describ

MEM_

 T bit, signed integers (2
ytes) starting from the DSP memory address and page indicated by the input “Page &

Add es

ing an error.

Write_I2.vi

he subVI MEM_Write_I2.vi, shown in Figure 85 writes 16-
b

r s” by direct memory access.

error out

CCS In

error in

CCS Out
Timeout

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

Data

Figure 85. The MEM_Write_I2.vi

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Inpu “t CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write

LabVIEW to CCS Link 83

proc ss the fact that many
proc ss ed on the user’s pc, the
valu s s default value is 10 sec (10000
msec).

e has bot been completed an error occurs. Because of
e es related to CCS and board communication are depend
e of input “Timeout” may have to be increased. It

 and the
address in DSP memory where the write operation will take place. Input “Page &
Input “Page & Address” is a cluster providing information about the page

Address” is constituted by the below elements:
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

: are
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a 16-bit, signed integer that will be written to the DSP memory starting

from the memory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

ME _

 T
bytes)
Addres

CCS_Event_Notif_In CCS_Event_Notif_Out

M Write_I4.vi

he subVI MEM_Write_I4.vi, shown in Figure 86, writes 32-bit, signed integers (4
starting from the DSP memory address and page indicated by the input “Page &
s” by direct memory access.

error out

CCS In

error in

CCS Out
Timeout

Page & Address

Data

Figure 86. The MEM_Write_I4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

84 2. Description of subVIs in LabVIEW to CCS Link

 Input “CCS In” is a cluster containing information about CCS.

 “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from th he write process has
bee c s passed and the write
proc ss ecause of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the

Input
 e moment the execution of the VI started till the moment t

n ompleted successfully. If this maximum time period ha
e has bot been completed an error occurs. B

values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 ay have occurred
befo itute input “error in”
are:

Input “error in” is a cluster of inputs describing the error that m
re the execution of this specific VI. The elements that const

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a 32-bit, signed integer that will be written to the DSP memory starting

from the memory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

T
inte r
memor

Page & Address

Data

M M Write_UI1.vi

 he subVI MEM_Write_UI1.vi, shown in Figure 87, writes 8-bit (1 byte), unsigned

ge s to the page and memory location indicated by the input “Page & Number” by direct
y access.

error out

CCS In CCS Out
Timeout

CCS_Event_Notif_In CCS_Event_Notif_Out

error in

Figure 87. The MEM_Write_UI1.vi

LabVIEW to CCS Link 85

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Inpu “

t CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

ss has bot been completed an error occurs. Because of the fact that many
proc ss on the user’s pc, the
valu s value is 10 sec (10000
msec).

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
proce

e es related to CCS and board communication are depended
e of input “Timeout” may have to be increased. Its default

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a

starting from the m
n 8-bit, unsigned integer that will be written to the DSP memory
emory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a rs information. The elements
that constitute output “error out” are:

cluster of outputs containing erro

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

 T
bytes)
Addres

M M Write_UI2.vi

he subVI MEM_Write_UI2.vi, shown in Figure 88, writes 16-bit, unsigned integers (2
starting from the DSP memory address and page indicated by the input “Page &
s” by direct memory access.

86 2. Description of subVIs in LabVIEW to CCS Link

CCS_Event_Notif_Out

error out

CCS In

error in

CCS Out
Timeout

Page & Address

CCS_Event_Notif_In

Data

Figure 88 The MEM_Write_UI2.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 “

Input CCS In” is a cluster containing information about CCS.

 Inpu “ time period in msec,
from th e moment the write process has

ended on the user’s pc, the

t Timeout” is a 32-bit integer, and it defines the
 e moment the execution of the VI started till th

 maximum

been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are dep
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information abou

address in DSP memory where the write operation will take pla
t the page and the
ce. Input “Page &

Address” is constituted by the below elements:
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Inpu “ error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

t error in” is a cluster of inputs describing the

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a 16-bit, unsigned integer that will be written to the DSP memory

starting from the memory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

LabVIEW to CCS Link 87

MEM_

 T
bytes)
Addres ect memory access.

Write_UI4.vi

he subVI MEM_Write_UI4.vi, shown in Figure 89, writes 32-bit, unsigned integers (4
starting from the DSP memory address and page indicated by the input “Page &
s” by dir

CCS In CCS Out
Timeout

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Data

Figure 89. The MEM_Write_UI4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Inpu “

t CCS In” is a cluster containing information about CCS.

 Inpu “ maximum time period in msec,

and board communication are depended on the user’s pc, the

t Timeout” is a 32-bit integer, and it defines the
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information abou

address in DSP memory where the write operation will take pla
t the page and the
ce. Input “Page &

Address” is constituted by the below elements:
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Inpu “ error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”

t error in” is a cluster of inputs describing the

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a 16-bit, unsigned integer that will be written to the DSP memory

starting from the memory location indicated by the input “Page & Number”.

 Output “CCS_Event_N ins information relative to the

otif_Out” is a cluster that conta
events that may happen to CCS.

 ntaining information about CCS. Output “CCS Out” is a cluster co

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

88 2. Description of subVIs in LabVIEW to CCS Link

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

Write_String.vi

he subV

MEM_

T I MEM_Write_String.vi, shown in Figure 90, writes a string starting from the
SP m

access.

D emory address and page indicated by the input “Page & Address” by direct memory

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out

CCS In

error in

CCS Out
Timeout

Page & Address

Data

Figure 90 The MEM_Write_String.vi

 Inpu “
eve s

t CCS_Event_Notif_In” is a cluster that contains information relative to the
nt that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

ution of the VI started till the moment the write process has

been completed successfully. If this maximum time period has passed and the write

rd communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the exec

process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and boa

msec).

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is a string that will be written to the DSP memory starting from the

memory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

LabVIEW to CCS Link 89

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

Write_A_F4.vi

he subVI MEM_Write_A_F4.vi, shown in Figure 91, writes an array that consists of
(4 bytes

MEM_

 T

2-bit), single precision floating-point numbers starting from the DSP memory
dd ss

3
a re and page indicated by the input “Page & Address” by direct memory access.

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out
error in

Page & Address

Data

CCS In CCS Out
Timeout

Figure 91 The MEM_Write_A_F4.vi

 “CCS_Event_Notif_In” is a cluster that contains information relative to the
eve s

Input
nt that may happen to CCS.

 Inpu “ ut CCS. t CCS In” is a cluster containing information abo

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write

rd communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000

process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and boa

msec).

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

90 2. Description of subVIs in LabVIEW to CCS Link

 Input “Data” is an array ating-point numbers, that will
be written to the DSP memory starting from the memory location indicated by the

 from 32-bit, single precision, flo

input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

ME _

 T sists of
double prec io
address and pa

Page & Address

M Write_A_F8.vi

he s bVu I MEM_Write_A_F8.vi, shown in Figure 92 writes an array that con
is n floating-point numbers των 64 bits (8 bytes) starting from the DSP memory
 ge indicated by the input “Page & Address” by direct memory access.

CCS In CCS Out
Timeout

CCS_Event_Notif_In CCS_Event_Notif_Out

error out

i

error in
Data

Figure 92 Τhe MEM_Write_A_F8.v

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 er, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has

assed and the write
process has bot been completed an error occurs. Because of the fact that many

o be increased. Its default value is 10 sec (10000
ec).

Input “Timeout” is a 32-bit integ

been completed successfully. If this maximum time period has p

processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have t
ms

 Inpu “ ation about the page and the
address in DSP memory where the write operation will take place. Input “Page &

tituted by the below elements:

t Page & Address” is a cluster providing inform

Address” is cons
 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

LabVIEW to CCS Link 91

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is an array from 64-bit, double precision floating-point numbers, that will

be written to the DSP memory starting from the memory location indicated by the
input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

Output “CCS Out” is a cluster containing information about CCS.

Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.

 Output “source” is a String describing an error.

Write_A_I1.vi

MEM_

 The s V
bit, signed inte P memory address and page indicated by the

put “Page & Address” by direct memory access.

CCS Out

ub I MEM_Write_A_I1.vi, shown in Figure 93, writes an array that consists of 8-
gers (1 byte) starting from the DS

in

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out
Timeout

Page & Address

CCS In

error in
Data

Figure 93 Τhe MEM_Write_A_I1.vi

may happen to CCS.

Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum ti

from the moment the execution of the VI started till the moment th
me period in msec,
e write process has

 the user’s pc, the
e is 10 sec (10000

msec).

been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on
values of input “Timeout” may have to be increased. Its default valu

92 2. Description of subVIs in LabVIEW to CCS Link

 Input “Page & Address” is a cluster providing information about the page and the
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a c ay have occurred
before the execution of at constitute input “error in”

luster of inputs describing the error that m
 this specific VI. The elements th

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is an array from 8-bit, signed integers that will be written to the DSP

memory starting from the memory location indicated by the input “Page & Number”.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

EM_Write_A_I2.vi

 T
16-bit, signed integers (2 bytes) starting from the DSP memory address and page indicated by
the input “P

CCS Out
vent_Notif_Out

M

he subVI MEM_Write_A_I2.vi, shown in Figure 94, writes an array that consists of

age & Address” by direct memory access.

 CCS_Event_Notif_In CCS_E

error out
error in

Timeout
Page & Address

Data

CCS In

Figure 94 Τhe MEM_Write_A_I2.vi

 Input “CCS_Event_Notif_In” is a cluster that contains informa

events that may happen to CCS.
tion relative to the

 Input “CCS In” is a cluster containing information about CCS.

 e period in msec,

from th the write process has
bee c riod has passed and the write

Input “Timeout” is a 32-bit integer, and it defines the maximum tim
 e moment the execution of the VI started till the moment

n ompleted successfully. If this maximum time pe

LabVIEW to CCS Link 93

process has bot been completed an error occurs. Because of the fact that many
o CCS and board communication are depended on the user’s pc, the
imeout” may have to be increased. Its default value is 10 sec (10000

processes related t
values of input “T
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of at constitute input “error in”
are:

 this specific VI. The elements th

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is an array consisted of 16-bits signed integers that will be written to the

DSP memory starting from the memory location indicated by the input “Page &
Number”.

Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

 CCS Out” is a cluster containing information about CCS. Output “

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

 T
32-bit, d page indicated by
the input “P

M M Write_A_I4.vi

he subVI MEM_Write_A_I4.vi, shown in Figure 95, writes an array that consists of
signed integers (8 bytes) starting from the DSP memory address an

age & Address” by direct memory access.

error out

CCS In

error in

CCS Out
Timeout

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

Data

Figure 95 Τhe MEM_Write_A_I4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

94 2. Description of subVIs in LabVIEW to CCS Link

 information about CCS.

Input “CCS In” is a cluster containing

 Inpu “ me period in msec,
from th moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many

o CCS and board communication are depended on the user’s pc, the
imeout” may have to be increased. Its default value is 10 sec (10000

t Timeout” is a 32-bit integer, and it defines the maximum ti
 e moment the execution of the VI started till the

processes related t
values of input “T
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” imal representation, showing

the address of the DSP memory.

 is an unsigned integer in hexadec

 inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
Input “error in” is a cluster of

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Input “Data” is an array consisted of 32-bits signed integers that will be written to the
DSP memory starting from the memory location indicated by the input “Page &
Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 ation about CCS.

Output “CCS Out” is a cluster containing inform

 Out t
that con

pu “error out” is a cluster of outputs containing errors information. The elements
stitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

MEM_Wr e_

The s V writes an array that consists of
-bi (1

the p

it A_UI1.vi

8

ub I MEM_Write_A_UI1.vi, shown in Figure 96,
t byte), unsigned integers starting from the DSP memory address and page indicated by
in ut “Page & Address” by direct memory access.

LabVIEW to CCS Link 95

CCS Out
ut CCS_Event_Notif_In CCS_Event_Notif_O

error out
error in

Timeout
Page & Address

CCS In

Data

i Figure 96 Τhe MEM_Write_A_UI1.v

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
. events that may happen to CCS

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP m mory. e
 Input “Addres mal representation, showing

the address of the DSP memory.

s” is an unsigned integer in hexadeci

 inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
Input “error in” is a cluster of

are:
 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

Input “Data” is an array of an 8-bit, unsigned integers that will be written to the DSP
memory starting from the memory location indicated by the input “Page & Number”.

 tif_Out” is a cluster that contains information relative to the
events that may happen to CCS.

Output “CCS_Event_No

Output “CCS Out” is a cluster containing information about CCS.

 Out t ation. The elements
that on

pu “error out” is a cluster of outputs containing errors inform
 c stitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

96 2. Description of subVIs in LabVIEW to CCS Link

EM_Write_A_UI2.vi

 T
16-bit, unsigned integers (2 bytes) starting from the DSP memory address and page indicated

y the input “Page & Address” by direct memory access.

M

he subVI MEM_Write_A_UI2.vi, shown in Figure 97, writes an array that consists of

b

 CCS_Event_Notif_In

error out
Timeout

Page & Address

CCS In CCS Out

error in

CCS_Event_Notif_Out

Data

97 Τhe MEM_Write_A_UI2.vi Figure

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

low elements:
address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the be

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is an array from 16-bit, unsigned integers that will be written to the DSP

memory starting from the memory location indicated by the input “Page & Number”.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 ut “CCS Out” is a cluster containing information about CCS.

Outp

 Out t rmation. The elements
that on

pu “error out” is a cluster of outputs containing errors info
 c stitute output “error out” are:

LabVIEW to CCS Link 97

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

E _

 T
32-bit, signe nd page indicated
by the inpu

CCS Out

Page & Address

CCS_Event_Notif_In CCS_Event_Notif_Out

M M Write_A_UI4.vi

he subVI MEM_Write_A_UI4.vi, shown in Figure 98, writes an array that consists of
un d integers (8 bytes) starting from the DSP memory address a

t “Page & Address” by direct memory access.

error out

CCS In
Timeout

error in
Data

Figure 98 Τhe MEM_Write_A_UI4.vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the

events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,
from the moment the execution of the VI started till the moment the write process has
been completed successfully. If this maximum time period has passed and the write
process has bot been completed an error occurs. Because of the fact that many
processes related to CCS and board communication are depended on the user’s pc, the
values of input “Timeout” may have to be increased. Its default value is 10 sec (10000
msec).

 Input “Page & Address” is a cluster providing information about the page and the

address in DSP memory where the write operation will take place. Input “Page &
Address” is constituted by the below elements:

 Input “Page” is a 16-bit integer, showing the page of the DSP memory.
 Input “Address” is an unsigned integer in hexadecimal representation, showing

the address of the DSP memory.

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Input “Data” is an array from 32-bit, unsigned integers, that will be written to the DSP

memory starting from the memory location indicated by the input “Page & Number”.

98 2. Description of subVIs in LabVIEW to CCS Link

 Out t ains information relative to the
events that may happen to CCS.

pu “CCS_Event_Notif_Out” is a cluster that cont

 ntaining information about CCS. Output “CCS Out” is a cluster co

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.9

 The subVI Leds_Read_(DSK6713).vi, shown in Figure 99, return to the output
“Leds_Valu ” m Digital’s DSK C6713 in

exadecimal representaion.
 The status of the four leds is represented by a 4-digit bynary number, where each bit
corresponds to a led. The most significant digit corresponds to led 3 and the least significant
to led 0. Each led is supposed to have the value 1 when it’s on otherwise the value is 0.
Consequently the output “Leds_Value” takes values from 0 to 15. If the value of the output
“Leds_Value” is 10, in hexadecimal representation, only the leds 1 and 3 are on.

Leds_Read_(DSK6713).vi

e , the status of the the four leds on Spectru
h

error out

CCS In

error in

CCS Out
Timeout Leds_Value

CCS_Event_Notif_In CCS_Event_Notif_Out

Figure 99. The Leds_Read_(DSK6713).vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process of
the status of the leds has been completed successfully. If this maximum time period
has passed and the status of the leds has not been read, an error occurs. Because of the
fact that many processes related to CCS and board communication are depended on
the user’s pc, the values of input “Timeout” may have to be increased. Its default value
is 10 sec (10000 msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

LabVIEW to CCS Link 99

 at contains information relative to the Output “CCS_Event_Notif_Out” is a cluster th
events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Leds_Value” is an 8-bit, unsigned integer indicating the leds’ status in

hexadecimal representation on DSK C6713. Output “Leds_Value” takes values from 0
to 15.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

.3.10

resented by a 4-bit binary number, where each bit
p ificant digit corresponds to led 3 and the least significant

CCS Out
eout

otif_In CCS_Event_Notif_Out

2 Leds_Write_(DSK6713).vi

 The subVI Leds_Write_(DSK6713).vi, shown in Figure 100, writes the four leds’ status
on DSKC6713 according to the value of input “Leds_Value”. Input “Leds_Value” takes
values from 0 to 15.
 The status of the four leds is rep
orres onds to a led. The most signc

to led 0. Each led is supposed to have the value 1 when it’s on otherwise the value is 0. If the
value of the input “Leds_Value”, is 12, in hexadecimal representation, the
Leds_Write_(DSK6713) will change the leds status, so that only leds 2 and 3 will be on, in
spite of their previous status.

CC

CCS_Event_N

error out
error in

Leds_Value

S In
Tim

Figure 100. The Leds_Write_(DSK6713).vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the write process of
period

CCS and board communication are depended
lt

the status of the leds has been completed successfully. If this maximum time
has passed and the status of the leds has not been written, an error occurs. Because of
the fact that many processes related to
on the user’s pc, the values of input “Timeout” may have to be increased. Its defau
value is 10 sec (10000 msec).

100 2. Description of subVIs in LabVIEW to CCS Link

 Input “Leds_Value” is an 8-bit, unsigned integer defines the new status of the leds on
DSK C6713, in hexadecimal representation. Input “Leds_Value” takes values from 0
to 15.

 Input “error in” is a cluster of inputs describing the error that may have occurred

before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “error out” is a cluster of outputs containing errors information. The elements
that constitute output “error out” are:

 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

2.3.11 Switches_Read_(DSK6713).vi

 The subVI Switches_Read_(DSK6713).vi, shown in Figure 101, return to the output
“Switches_Value” the status of the four switches on Spectrum Digital’s DSK C6713, in
hexadecimal representation.
 The status of the four switches is represented by a 4-digit binary number, where every
digit corresponds to a switch. The most significant digit corresponds to switch 3, while the
least significant digit corresponds to switch 0. Each switch is supposed to have the value 1
when it’s open (OFF status) otherwise the value is 0. Consequently the output
“Switches_Value” takes values from 0 to 15. If the value of output “Switches_Value”, in
hexade 3 are
closed.

cimal representation, is 5 means that the switches 0 and 2 are open while 1 and

 CCS_Event_Notif_In CCS_Event_Notif_Out

error out

CCS In

error in

CCS Out
Timeout Switches_Value

Figure 101. The Switches_Read_(DSK6713).vi

 Input “CCS_Event_Notif_In” is a cluster that contains information relative to the
events that may happen to CCS.

 Input “CCS In” is a cluster containing information about CCS.

 Input “Timeout” is a 32-bit integer, and it defines the maximum time period in msec,

from the moment the execution of the VI started till the moment the read process of
the status of the switches has been completed successfully. If this maximum time

LabVIEW to CCS Link 101

period has passed and the status of the switches has not been read, an error occurs.
Because of the fact that m
depended be increased. Its

any processes related to CCS and board communication are
on the user’s pc, the values of input “Timeout” may have to

default value is 10 sec (10000 msec).

 Input “error in” is a cluster of inputs describing the error that may have occurred
before the execution of this specific VI. The elements that constitute input “error in”
are:

 Input “status” is Boolean and shows if any error occurred.
 Input “code” is a 32-bit integer showing the error code.
 Input “source” is a String describing an error.

 Output “CCS_Event_Notif_Out” is a cluster that contains information relative to the

events that may happen to CCS.

 Output “CCS Out” is a cluster containing information about CCS.

 Output “Switches_Value” is an 8-bit, unsigned integer indicating the status of the
swiches on DSK C6713, in hexadecimal representation. Output “Switches_Value”
takes values from 0 to 15.

 Output “error out” is a cluster of outputs containing errors information. The elements

that constitute output “error out” are:
 Output “status” is Boolean and shows if any error occurred.
 Output “code” is a 32-bit integer showing the error code.
 Output “source” is a String describing an error.

102 3. Using the LabVIEW to CCS Link

.

Link, the user can develop in a fast and easy way
is that will control and communicate with DSPs applications. It must be clear that the Vis

CCS Link do not create executable code for the
 designed in Code Composer Studio and next the

ser h

hat were presented above, provide the user with
re, through a VI, the board or the DSP that the CCS will use.

 Below, the way in which, the
 presented.

 that the DSKC6713 is to

ade using the CCStudio
eps that the user would have done manually, to define the

•
•
• the

“Available Boards” window, or by entering the board’s / simulator’s driver (file with .ccs
th.

• p.

sub Therefore, in the blank VI of LabVIEW the user

e

• he CCStudio Setup, which is done by the CCSetup_ Open.vi.

• these setting, which is done by the CCSetup_Save.vi.

3 Using the LabVIEW to CCS Link

 With LabVIEW and LabVIEW to CCS
V
developed with LabVIEW and LabVIEW to
DSP module. At first, the application must be
u as to develop the VI that will manage it. In this point we emphasize on the way of
developing a VI that will control the application.
 In paragraphs that follow, we try to make understandable, the way of using the subVIs
included in LabVIEW to CCS Link, according to the category they belong to.

3.1 CCS Setup

 The subVIs of the CCS Setup category t
the capability to define in softwa
In fact the subVIs of this category control the CCStudio Setup.
user can define one or more DSPs using a VI, is going to be

3.1.1 CCS Setup for one board

 In order for the user to develop a VI that would set the CCS, so
be used, has to think at first what are the exact steps that would be m
Setup manually. These st
DSKC6713 are:

Open the CCStudio Setup
Clear all previous settings
Choose and add the desired board, in this case the DSKC6713, either by using

extension) choosing File Import and providing the file’s name and pa
• Save the settings that were made.

Close the CCStudio Setu

All steps above can be implemented with LabVIEW, using the CCS setup category’s
VIs included in LabVIEW to CCS Link.

can place these subVIs that correspond to the steps that would have been done manually. Th
choice of the appropriate VIs is done following this steps:

First step is to open t
• Second step is to clear all previous settings of CCStudio Setup, which is done by the

CCSetup_Clear.vi.
• Third step is to choose and add a board, which is done by the CCSetup_Add_Board.vi.

Fourth step is to save
• Fifth step is to close the CCSetup Studio, which is done by the CCSetup_Close.vi.

LabVIEW to CCS Link 103

and add the necessary controls, indicators and constants in order for the VI to work. It must be
re

up is

 When the above subVIs are placed in the blank VI, the user will have to connect them

noticed that the subVIs’ inputs that stay disconnected, take their defaults values. In Figu
102, the final block diagram of the VI that defines the DSKC6713 through CCStudio Set
presented.

Figure 102. The block diagram of he VI that defines DSKC6713.

The Boolean constant with the value False th

 t

at was connected to the “Visible” input of
the CCSetup_ Open.vi defines that CCStudio Setup will actually open but won’t be visible to
the user. The control “error in” that was connected to the corresponding input of
CCSetup_Open.vi is optional since the thing that matters is if this specific VI is used as
subVI. Τhe constant “Driver Path” contains the full path of the DSKC6713 drives. If CCS is
installed to a different location than the default, then the content of the constant “Driver Path”,
which is connected to the corresponding input of CCSetup_Add_ Board.vi, has to be changed
as well. Finally the indicator “error out” will inform the user if any error has occurred during
the VI’s execution.

Figure 103. The CCStudio Setup window after the execution of the VI defining the DSKC6713.

 If the above VI is executed and after that the CCStudio Setup is opened, it will be
noticed that the CCS setup for using the DSKC6713 is done. The CCStudio Setup window
will look like Figure 103.

.1.2 CCS Setup for m3

ultiple boards

d or combination of different boards
ne ore that one

imulators.

 CCS has the advantage of using more than one boar
nd o simulator at the same time. However, it does not allow the use of ma

s

104 3. Using the LabVIEW to CCS Link

processor of the DSKC6713 board tomy_CPU.

 Following the pattern described in paragraph 3.1.1 a VI named
CCS_Setup_for_multiple_boards.vi was created, the block diagram of which is presented in
Figure 104. This VI defines the simultaneous use of the DSKC6713 board, DSKC6711 board
and the C6713 Device Cycle Accurate Simulator. It also alters the name of the DSKC6711
board to my_board and the name of the

Figure 104. The block diagram of CCS_Setup_for_multiple_boards.vi

 The CCS_Setup_for_multiple_boards.vi at first opens the CCStudio Setup which is
visible to the user since the default value of input “Visible” in CCSetup_Open.vi is True.
Next, the CCSetup_Clear.vi clears all previous CCStudio Setup settings while the
CCS_Setup_Add_Board.vi enters the board that corresponds to the driver indicated by the
constant “Driver Path”. The board is DSKC6713. The CCSetup_Rename_Board.vi alters the
board’s name which was entered (meaning the DSKC6713) into the one containing in the
constant “New Name” which is “my_board”. The CCS_Setup_Add_Board.vi is used again in
order to enter the board, the driver’s path of which is indicated by the constant “Driver
Path1”. The constant “Driver Path1” contains the DSKC6711 drivers’ path, that uses the
SPP378 address of the parallel port, so the board that is inserted now is the DSKC6711. The
CCSetup_Rename_Processor.vi alters the name of the board’s CPU, which was entered
(meaning the DSKC6711) into the one included in the constant “ProcName” , that is
“my_CPU”. The CCS_Setup_Add_Board.vi which is used once again enters the simulator,
the driver’s path of which was defined by the constant “Driver Path2”. The constant “Driver
Path2” contains the drivers’ path of the C6713 Device Cycle Accurate Simulator, so the
simulator for the TMS320C6713 DSP will be entered. The new settings will be saved after the
execution of the CCSetup_Save.vi. Finally the CCS_Setup_for_multiple_boards.vi execution
is completed by closing the CCStudio Setup, which is done by the CCSetup_Close.vi.
 After the successful execution of the CCS_Setup_for_multiple_boards.vi the settings are
saved and the CCS is ready to use the DSKC6713 with its new name, the DSKC6711 with the
new processor’s name and the C6713 Device Cycle Accurate Simulator. The CCStudio Setup
will look like Figure 105.

LabVIEW to CCS Link 105

Figure 105. The CCStudio Setup window after the execution of the CCS_Setup_for_multiple_boards.vi

3.2 CCS Automation

 The subVIs of the CCS Automation category that were presented in previous section,
provide the user with the capability for software control, through a VI, of the Code Compose
Studio and consequently the DSP. Below, the way in which, the user can develop a VI that
will control one or more DSPs, is presented.

3.2.1 Automate CCS to control one DSP

 B

 of the program.
 W

 Close the CCS.

 In order for the user to develop a VI that would control a TI’s DSP through CCS, has to
think at first what are the exact steps that would be made using the CCStudio Setup manually.
These steps that the user would have done manually, to control a DSP (as long as the CCS
project has already been created) are:

• Open CCS.
• Open the desired CCS project.
• uild the project.
• Command CCS to connect with the DSP.
• Command the DSP to reset.
• Download the executable file (with .out extension) to DSP.
• Enable the RTDX technology if the project is using it.
• Command the DSP to start the execution of the program.
• As long as the desire procedure is completed, the user has to command the DSP to

terminate the execution
• hile the RTDX technology is enabled, the user must disable it.
• Command CCS to disconnect the board.
• Close the CCS project.
•

106 3. Using the LabVIEW to CCS Link

 All steps above can be implemented with LabVIEW, using the CCS Automation

category’s subVIs included in LabVIEW to CCS Link. Therefore, in the blank VI of
LabVIEW the user can place these subVIs that correspond to the steps that would have
been done manually. The choice of the appropriate VIs is done following this steps:

• The first step is to open CCS, which is done by the CCS_Open.vi.
• The second step is to open the desired CCS project, which is done by the

CCS_Open_Project.vi.
• The third step is to build this project, which is done by the CCS_Build_All.vi. If the user

wants to watch the results, during the building process, to the VI that it will be developed,
he has to use the CCS_Build_ Result.vi

• The fourth step is to connect CCS with the DSP, which is done by the CCS_ Connect.vi.
• The fifth step is to reset the DSP, which is done by the CCS_Reset.vi.
• The sixth step is to download the executable code to DSP, which is done by the

CCS_Download.vi.
• The seventh step is to enable the RTDX technology, which is done by the

TDX_En
hth s

by the CCS_Run.v
 The ninth step is for the DSP to stop the execution of the main program, which is done by

th

isconnect the board, which is done by the CCS_ Disconnect.vi.

onnect them
nd add the necessary controls, indicators, constants and structures in order for the VI to

the subVIs’ inputs that stay disconnected, take their defaults
alues. In Figure 106 the block diagram of a typical VI, that controls the CCS and

CCS_R able.vi.
• The eig which is done tep is for the DSP to start the execution of the main program,

i.
•

e CCS_Halt.vi.
• The tenth step is to disable the RTDX technology, which is done by the

CCS_Disable_RTDX.vi.
• The eleventh step is to d
• The twelfth step is to close the project, which is done by the CCS_Close_ Project.vi.
• The thirteenth step is to close CCS, which is done by the CCS_Close.vi.

 When the above subVIs are placed in the blank VI, the user will have to c
a
work. It must be noticed that
v
consequently the DSP, is presented.

Figure 106. Τhe block diagram of a typical VI, that controls the CCS and consequently the DSP

 In the block diagram of Figure 106 the constant “Project Path” which is connected to the

CS_Open_Project.vi input “Project Path In” would have to contain the project’s full path
that is about to be opened in CCS. The indicator “Build Result” connects with to the
CCS_Build_Result.vi output “Build Result” showing the results from the building process of

C

LabVIEW to CCS Link 107

the project. A While structure is between CCS_Run.vi and CCS_Halt.vi in which the main
code of the VI has to be written. The main code will have to implement the data process and
transfer from / to the DSP. The way in which the main code could exchange data with the
DSP is going to be presented in a following paragraph. As Figure 106 shows, the While
structure stops if any error occurs or if the control “Stop” takes the value True. However, as
long as the While structure is executed, the subVIs that are next can not be executed. This fact
ensures that the DSP will continue the execution of the main program till it is completed or till
the control “Stop” takes the value True.
 It has to be noticed that in the block diagram the CCS_Connect.vi and
CCS_Disconnect.vi must not be placed, if CCS is set to use any of the simulators, since the
dynamic connection and disconnection is for boards and not for simulators.
 If CCS is set to use any board then the CCS_Connect.vi must be placed before the
subVIs that are related to the DSP, such as CCS_Run.vi, CCS_ Reset.vi etc, since the
connection between the CCS and the board has to be completed. Additionally the CCS_
Disconnect.vi must be placed before the subVIs that cause the d the CCS to close
and after the subVIs that are related to the DS
the board.
 In case of the CCS project does not use the RTDX technology the subVIs that are

lated to the RTDX technology, such as the CS_ RTDX_Enable.vi, CCS_RTDX_Disable.vi

aults settings of the
gfile are not affected by the user. The use of the CCS_RTDX_Logfile_Configuration.vi is

meaningless if the Continuous method of the RTDX technology is chosen, since in that case
g choice of the RTDX method is carried out by the

CS_RTDX_Enable.vi.

ltaneously more that one boards or a
mb

 project an
P, since the CCS has to be disconnected from

re
etc, are useless. If the Non Continuous methods of the RTDX technology are used, then the
CCS_RTDX_Logfile_Configuration.vi could also be used, since the def
lo

the lo file is not used at all. The
C

3.2.2 Automate CCS to control more that one DSPs

 CCS has the advantage to manage simu
co ination between boards and one simulator, through Parallel Debug Manager (PDM). The
PDM is shown only if two boards (at least) or one board and one simulator are defined
through CCStudio Setup. In Figure 107 the PDM window is presented, when DSK C6713 and
C6711 are defined in CCStudio Setup.

Figure 107. The Parallel Debug Manager window

 For the simultaneous management of the CPUs that the boards contain, CCS has the
capability to open a Debug Window for each CPU. This feature provides the user with the
opportunity to program and mage each board separately.

108 3. Using the LabVIEW to CCS Link

 The LabVIEW to CCS Link together with the CCS Automation category’s subVIs
provide the user with the capability to control different Debug Window, therefore different
boards. The subVI CCS_Open_Project.vi defines which card and which processor is to be
used by the subVIs that follows, according to the value of input “Boards & Processors”. The
input “Boards & Processors” is a cluster of inputs consisting of two: the “Board” input and the
“Processor” input that are accepting 8-bit, unsigned integers. Input “Board” declares the board
that is to be controlled and the input “Processor” declares the processor of the board that is to
be controlled. For the Debug Window of the DSK C6713 to open in the case that the PDM
looks like Figure 107, the input “Boards” will have to take the value 1 and the input
“Processor” the value 0. Therefore the output CCS_Out of the CCS_Open_Project.vi, would
contain information related to the DSK C6713 Debug Window, so all the subVIs that will be
connected directly or indirectly to this output will refer to the DSKC6713. In the same way,
the output “CCS_Event_Notif_Out” contain information related to events that occur in the
Debug Window of the DSK C6713.
 The subVIs of the LabVIEW to CCS Link can be used ma times in a single VI.
Therefore, a VI can use two Project.vi in order to open

ore that one Debug Windows. The user m

roject Path”.
e pattern that the automation and the control of

 is used as described in paragraph 3.2.1.

ny
 or more that two times the CCS_Open_

ust be careful, before connects a subVI to an m
output “CCS_Out” or “CCS_Event_Notif_Out”, to understand in what Debug Window and
consequently in what CPU the specific output is referring to.
 In Figure 108 the block diagram of a VI that controls two boards at the same time is
presented. The boards that the VI will manage depend on the PDM. In case of the PDΜ
looking like Figure 107 then, the VI will control simultaneously the DSK C6711 (Board 0)
and the C6713 (Board 1). In the block diagram of Figure 108 the CCS_Open_Project.vi which
takes as input the constant “Project Path”, opens the Debug Window for the DSK C6711

oard 0) and loads the project, the path of which is indicated by the constant “P(B
The VIs that follow are depended on the sam
the CCS is being done, when only one board
 The CCS_Open_Project.vi that takes as input the constant “Project Path1”opens the
Debug Window of DSK C6713 (Board 1) and loads the project, the path of which is indicated
by the constant “Project Path1”, therefore the VIs that follow are referring to the DSK C6713.

Figure 108. The block diagram of a VI that controls two DSPs through CCS

Following the pattern that described above Vis that control more that one board at the
ame time, can be easily developed.

s

LabVIEW to CCS Link 109

.3 CCS Communication

The subVIs of the CCS Communication are developed for data exchange between a VI
nd a DSP. These subVIs that manage the communication, support reading from and writing
 the DSP memory either by direct access or by using the RTDX technology. The subVIs that

re handling the communication with the CCS and consequently the DSP, are part of the VI’s
ain code that automates the CCS as described in paragraph 3.2. This means that these

ubVIs are usually placed inside the While structure of Figures 106 and 108, so the
ontinuous communication between CCS and DSP is ensured.

The data transfer, by direct DSP memory access, has the advantage that does not require
e code modification in CCS project, while the main disadvantage of this method of data
ansfer is that the DSP has to interrupt the execution of the program that is running, till the
ata transfer is completed. The time of this interrupt depends on the data size.

TI, by developing the RTDX technology that has embodied to its DSPs, has managed to
chieve faster data transfers without interrupting the execution of the program on the DSP, for
reat time periods, so the data transfer will be completed successfully. However, the
isadvantage of this method is that the C code in a CCS project (that did not support Real
ime Data eXchange) has to be modified. The Η data transfer using the RTDX technology is
ery useful in real-time applications.

.3.1 Direct DSP memory access

Data transfer by direct DSP memory access, provides the user with the capability to read
nd write data to any location in the DSP memory. This is very important for the control of an
xisting application, since it does require code modification in CCS. The only demand is that

the variables of the project that contain the data to be transferred have to be global.

Reading from the DSP memory

 In order for the value of a double type variable to be read, the MEM_Read.vi has to be
used and the MEM_Read_F8 has to be chosen. Moreover, the page and the address in the
DSP memory, from where the read process will begin, have to be declared, in input “Page &
Address”. If the user does not know the memory location where the variable is saved, then he
has to use the MEM_Get_Address.vi and define in “Symbol Name” input the name of the
variable. Τhe MEM_Get_Address.vi will return the mage and address in the DSP memory,
where the variable is saved. Output “Data” of MEM_Read.vi will contain the value of the
variable that will be read.
 In Figure 109(a) the While structure of Figure 106 is presented, as it should be modified
in order to read a double type variable (8-byte, double precision, floating point number), that
is saved in address 8000C1FD (hex) of page 0 in the DSP memory.

3

a
to
a
m
s
c

th
tr
d

a
g
d
T
v

3

a
e

110 3. Using the LabVIEW to CCS Link

 (a) (b)
Figure 109. Reading a double type variable by direct DSP memory access

(a) (b) knowing its page and address, knowing only its name

In Figure 109(b) the While structure of Figure 106 is presented, as it should be modified
yte, double precision, floating point number),

ccording to its page and address in the DSP memory, located by the MEM_Get_Address.vi

e name of the variable. Τhe
EM_Get_Address.vi will return the mage and address in the DSP memory, where the

variable is saved. Output “Data” of MEM_Write.vi will contain the value of the variable that
will be written.
 In Figure 110(a) the While structure of Figure 106 as it should be modified in order to
write data that the control “Data” contains, in an integer (4-byte signed integer) variable
which is saved in address 8000FFE0 (hex) of page 0 in the DSP memory.
 In Figure 110(b) the While structure of Figure 106 as it should be modified in order to
write data that the control “Data” contains, in an integer (4-byte signed integer) variable
according to its page and address in the DSP memory, located by the MEM_Get_Address.vi
using the variable’s name.

in order to read a double type variable (8-b
a
using the variable’s name.
 With the procedure described above the reading of a variable of any type can be
accomplished. In order for an array or a string to be recognized from the DSP memory the
procedure presented above is followed with the difference that in input “Size” of
MEM_Read.vi the number of the array’s or string’s elements has to be declared.

Writing to the DSP memory

 In order to write data in an integer (int) variable, the MEM_Write.vi has to be used the
MEM_Write_I4 has to be chosen. Moreover, the page and the address in the DSP memory,
from where the write process will begin, have to be declared, in input “Page & Address”. If
the user does not know the memory location where the variable is saved, then he has to use
the MEM_Get_Address.vi and define in “Symbol Name” input th
M

LabVIEW to CCS Link 111

(a) (b)
Figure 110. Writing an integer variable by direct DSP memory access

(a) knowing its page and address, (b) knowing only its name

 With the procedure described above the writing of data in a variable of any type, in an
array or in a string which is saved to DSP memory, can be accomplished.

3.3.2 Using the RTDX technology

 The RTDX technology supported by TI’s DSPs, achieves faster data transfer speeds
towards direct memory access. Moreover, the RTDX technology allows data transfer from
and to the DSP without interrupting the execution of the program on the DSP, for great time
periods. This is the reason why in real-time applications the use of RTDX technology is
necessary especially for data tr

The subVIs that belong to the CCS Communication category provides the user with the

bers and arrays of all kind from the output channel that is indicated by the input
“Channel”. The RTDX channels are not two-way channels, so the channel that is indicated by
the input “Channel” has to be defined in CCS as utput channel, otherwise an error will occur.

ansfer of great size

capability to transfer data from and to the DSP using the RTDX technology as well as control
in software the RTDX channel. Below, the way in which data can be sent and received
through RTDX channels, despite the RTDX method (Continuous ή Non Continuous) that is in
use.

Receiving data through the RTDX channel.

 The RTDX channels that are declared in CCS are defined as input and output channels.
The input channels are transferring data to the DSP, while the output channels are transferring
data from the DSP. The data of an output RTDX channel will be recognized by LabVIEW
using the RTDX_Read.vi. The RTDX_Read.vi is a polymorphic VI which has the ability to
read n mu

 o

112 3. Using the LabVIEW to CCS Link

Figure 111. Reading from the RTDX channel

 In order for an array with float type (4- yte, single precision, floating point numbers)
elements to be read from an output channel named “Out_chan” the RTDX_Read.vi has to be

ead_SA_F4 has to be chosen. Input “Channel” will have to be
trol, that will contain the name of the output channel

ea

Sendin ugh the R ha

X channe transfe Using _Write.vi the writing
of data from LabVIEW to a RTDX channel is ite.vi is a polymorphic

ility to nu rs and inds t channe y
the input “Channel”. The RTDX channels are not

ut “Chann has to CCS hannel, an
ccur.

In order for an gers) elements to be
ritten from an input channel nam to be used and the

b

used and the RTDX_R
onnected with constant or a conc

(m ning Out_chan) transferring the array.
 In Figure 111 the While structure of Figure 106 is presents, as it should be modified to
ead data that the RTDX channel “Out_chan” contains. r

g data thro TDX c nnel

 The input RTD ls r data to DSP. the RTDX
 possible. The RTDX_Wr

 arrays of all k
two-way channels, so the channel that is

VI which has the ab mbe o the output l indicated b

indicated by the inp el” be defined in as output c otherwise
error will o
 array with unsigned short type (2-byte, unsigned inte

ed “In_chan” the RTDX_Write.vi has w
RTDX_Write_SA_UI2 has to be chosen. Input “Channel” will have to be connected with
constant or a control, that will contain the name of the input channel (meaning In_chan)
transferring the array.
 In Figure 111 the While structure of Figure 106 is presents, as it should be modified to
read data that the control “Data” contains, to the RTDX channel “In_chan”.

LabVIEW to CCS Link 113

ure 112.Writing to a RTDX channel

Fig

114 4. Applications

4. Applications

 In order to understand the capabilities of the LabVIEW to CCS Link toolkit, two
omplete projects will be pres r while the
econd is a cations are

ple

4 l Equalizer

In graphs, the theoretical guidelines about graphical equalizers will be
ex and the implementation of a three-band graphical
equalizer using MATLAB and CCS will be presented compendiously. We emphasize to the
d d show the results of this particular
eq

4

 plifying and attenuating
specific frequency bands of the signal. This process is very useful in cases where some
fr related to others, and they must be
am ied (as in the long-distance transmission of an audio signal through a wire). Moreover,
eq z r the reverse process, which means that some frequency bands have
to be attenuated in order for other frequencies to rise. The equalizers are used in almost every
modern audio reproduction system, to give the desired sound’s hue.
 Graphical equalizers achieve the division of the spectrum of a signal in different

ust allow to
equencies, around a cente -off all other frequencies.
nfortunately such an ideal Figure 113, the respond of
e filt

c ented. The first is a graphical three-band equalize
n application on digital image processing. Both of the applis

im mented using CCS and the DSKC6713. The control and the results of each application
are realized by the corresponding VI, which has been developed in LabVIEW using the
LabVIEW to CCS Link.

.1 A Three-band Graphica

 the following para
plained. Furthermore, the design

evelopment of the corresponding VI that will control an
ualizer.

.1.1 Guidelines for graphical equalizers

The process of the equalization of a signal consists in am

equency bands of the signal have been attenuated,
plif

uali ers are also used fo

frequency bands by using a group o f low-pass filters. An ideal low-pass filter m
fr r frequency, to pass, while cutting

filter is not possible to implement. InU
th ers used in graphical equalizers is presented. The Q factor of every filter is defined as
the ratio of the center frequency ω0 to the bandwidth ∆ω=ω2-ω1,

Figure 113. Frequency Response of a low-pass filter

LabVIEW to CCS Link 115

and it is described by the equation:

12

00

ωω
ω

ω
ω

−
=

∆
=Q (1)

The Q factor shows how heavy is the response of the filter.
 Using N low-pass filters, the signal’s frequency spectrum is divided into N regions.
These filters are connected in parallel, as shown in Figure 114. The equalizer’s output is the
sum of all the filters’ outputs. The amplification or attenuation of each region is achieved by
multiplying the output of the corresponding filter with a gain factor G. In case where G is
greater than one the specific frequency region is amplified, otherwise (G<1) is attenuated.
The center frequency of each filter as well as the number of the filters depends on the
application of the equalizer and on the sampling frequency of the signal (in case of a digita
signal).

l

Filter 1

Filter 2

Filter 3

Filter N

A/D D/A

Gain 3

Gain 2

Gain 1

Gain N

Gain 0

Figure 114. N-region digital equalizer

 Usually, the main frequencies of two sequential filters are differed to an octave (one
fi signals (where equalizers are heavily
u r (ten f quenc requencies of which start form 31 Hz and
reach 16 k of the ten low-pass filters of such an
eq re second-order IIR filters. As shown in Figure 115,
th erlapping in the filters’ responses, because the filters are no ideal. So,
when the output of a filter is amplified, not only the frequencies around the main one are
am ll the other frequencies. The difference is that these frequencies (apart
fr e already been degraded from the filter, so in the final result only the
passband frequencies are amplified. Furthermore, because of the non-ideal filters, when all the
gain factors are 1 the final frequency response of the equalizer is not linear, as someone would
expect.

lter has ω0 , while the others has 2 x ω0). For audio
sed) ten filte s re y bands) then main f

Hz, are used. In Figure 115 the responds
resented. These filters aualizer is p

ere has been an ov

plified, but also a
om the passband) hav

116 4. Applications

Figure 115. Filter’s responses of a ten-band equalizer

 f an equalizer usually are IIR, because for their implementation
less coefficients are needed compared to the corresponding FIR filters. In addition, most of
th ey consist of only one biquad
(Figure 116). As a result, only 5 multiplications and two sums are required for each filter. The
transfer function of such a biquad is:

The low-pass filters o

e times these are second-order filters, which means that th

() 2
2

1
1

2
2

1
10

1 −−

−−

−−
++

=
zaza
zbzbbzHi (2)

T s to the reduction of time needed by the
p

he use of second-order IIR filters contribute
ce the output. rocessor, to produ

z

z

b0

b1-a1

y(n)x(n)

-1

-1

b2-a2

Figure 116. A biquad

LabVIEW to CCS Link 117

4.1.2 Specifications

 The three-band graphical equalizer that will be shortly implemented, consists of three
second-order IIR filters. The specifications of these three filters are presented in Table 12.

Filter Type Filter
Order Designing Method Sampling

Frequency Passband

Low-Pass Butterworth 2nd Bilinear
Transformation Fs = 48 kHz < 5.5 kHz

High-Pass Butterworth 2nd Bilinear
Transformation Fs = 48 kHz 5.5 – 11 kHz

Band-Pass Butterworth 2nd Bilinear
Transformation Fs = 48 kHz > 11 kHz

The control of the equalizer, implemente or the DSKC6713, will be done
through a VI, developed with LabVIEW to CCS Link. The
communication between the VI will be achieved by using the
RTDX technology.

4.1.3 Design and control of the graphical equalizer using MATLAB

 The design of the equalizer using MATLAB, comprises the filters’ coefficients
computation according to the given specifications. τρων. The control of the equalizer will be
done with a hypothetical signal created in MATLAB.

Filters’ coefficients computation.

For the IIR fil r includes, has been
ade by the following m-file.

clear all;

Table 12. Specifications of the three-band graphical equalizer

 The graphical equalizer will accept a hypothetical signal, a composition of three
sinusoidals with frequencies at 200Hz, 7kHz and 14kHz respectively, created with MATLAB.
This hypothetical signal will be used to control the equalizer through MATLAB and to
ompare the results with these that will rise from the equalizer’s CCS implementation. c

 d with CCS f
using the LabVIEW

, the CCS and the DSKC6713

m

ters’ coefficients computation that the equalize

close all;

n=1; %Number of Biquads
fs = 48000; %Sampling frequency

%Initialize coefficients’ Table
scoefs = zeros(3*n,6);

%Axes limits
nxmin = 10;
nxmax = fs/2;
nymin = -50; %log scale

118 4. Applications

%log scale nymax = 10;

%Computation and representation of the low-pass filter
[b,a]=butter(2*n,2*5500/fs);
scoefs(1:n,:) = tf2sos(b,a);
[h,w]=freqz(b,a,fs/2,fs);
figure
 semilogx(20*log10(abs(h)))
 axis([nxmin nxmax nymin nymax])

% Computation and representation of the band-pass filter

[b,a]=butter(n,[2*5500/fs 2*11000/fs]);
scoefs(1:n,:) = tf2sos(b,a);
[h,w]=freqz(b,a,fs/2,fs);
hold on
 semilogx(20*log10(abs(h)))

% Computation and representation of the high-pass filter

 [b,a]=butter(2*n,2*11000/fs,'high');
scoefs((n+1):2*n,:) = tf2sos(b,a);
[h,w]=freqz(b,a,fs/2,fs);
hold on
semilogx(20*log10(abs(h))); title('frequency response (dB)')

coefs(:,1) = -scoefs(:,5); % -a1
coefs(:,2) = -scoefs(:,6); % -a2
coefs(:,3) = scoefs(:,1); % b0
coefs(:,4) = scoefs(:,2); % b1
coefs(:,5) = scoefs(:,3); % b2

%Save the filters’ coefficients to a .cof file
save_equ_coefs(coefs,n);

Program 1. The m-file that calculates the IIR filters’ coefficients of the equalizer

 In the above m-file the function save_equ_coefs() is called, which saves the filter;s
coefficients to a .cof file with a name decided by the user. Next , the save_equ_coefs()
function is presented.

function save_equ_coefs(coefs,SOS);

[filename,pathname,filterindex]=uiputfile('*.cof','Save the equalizer cofficients');
if (filterindex ~= 0)
 fid=fopen([pathname,filename],'w');

 fprintf(fid,'/* Equalizer coefficients in float format */\r\n');
 fprintf(fid,'\r\n#define sections %d \r\n',SOS);

 for i=1:1:size(coefs,1)/SOS
 fprintf(fid,'\r\nfloat coefs%d[%d] = \r\n',i-1,5*SOS);

LabVIEW to CCS Link 119

 fprintf(fid,'{\r\n');
 for j=1:1:SOS
 fprintf(fid,'\t%6d\t,\t%6d\t,\t%6d\t,\t%6d\t,\t%6d,\t\r\n',...
 coefs((i-1)*SOS+j,1),coefs((i-1)*SOS+j,2),coefs((i-1)*SOS+j,3),...
 coefs((i-1)*SOS+j,4),coefs((i-1)*SOS+j,5));
 end
 fprintf(fid,'};\r\n');
 end
 fclose(fid);
end

Program 2. The save_equ_coefs() function

 When the above m-file (Program 1) is executed, a window will appear asking for the
n be reated that w s. If the name of this file
is ok l e Fig n the filters’ response
o

ame of the file to c ill contain the filters’ coefficient
 equalizer.cof, it w l ik ure 117. The m-file will also desigil lo
f the equalizer (Figure 1 18).

Figure 117. The filters’ coefficient file of the equalizer, named equalizer.cof

Figure 118. The filters; response of the equalizer

 lters of the equalizer meet the desired
specification

From Figure 118 it is concluded that the fi
s.

120 4. Applications

Generation of a hypothetical signal

 In order to control the function of the equalizer, a hypothetical signal will be used
co cies 200Hz, 7kHz and 14kHz respectively. The
sa . The m-file that is shown below generates the
h calculates and represents the 512-point FFT of the
si ader file (with .h extension), so as to be used
for the control of the equalizer through.

nsisting of three sinusoidal with frequen
mpling frequency of this signal is 48kHz

ypothetical signal, represents the signal,
gnal. Finally, it saves the signals’ points to a he

close all;
clear all;

f1=200; f2=7000; f3=14000; %Sinusoidals’ frequencies
fs = 48000; %Sampling frequency

%Generation of the hypothetical signal
t = 0:1/fs:1;
x1 = sin(2*pi*t*f1);
x2 = sin(2*pi*t*f2);
x3 = sin(2*pi*t*f3);
xtot = (x1 + x2 +x3)/3;
xs = xtot(1:512);
xq = round(xs*(2^15-1));

%Representation of the signal
figure(1)
plo q) t(x
a i 0 512 -inf inf]) x s([

%Calculation and representation of the FFT
y = abs(fft(xq));
figu (2re)
plo) t(y
a i 0 512 -inf inf]) x s([

%Saving the signal
save_signal(xq)

Program 3. The m-file that generates the hypothetical signal

 T er decide, from the dialog window
th hypothetical signal. The function
save_signal() is shown below.

he function save_signal() is used in order for the us
ll appear, the name of the header file of the at wi

function save_signal(data);

[filename,pathname,filterindex]=uiputfile('*.h','Save the signal');
if (filterindex ~= 0)
fid=fopen([pathname,filename],'w');

LabVIEW to CCS Link 121

signal_size = length(data);

fprintf(fid,'/* Signal data*/\r\n');

fprintf(fid,'\r\nshort signal[%d] = \r\n',signal_size);
fprintf(fid,'{\r\n');
for i=1:(signal_size)

fprintf(fid,'\t%6d,\r\n', data(i));
end
fprintf(fid,'};\r\n');
fclose(fid);
end

Program 4. The function save_signal()

 When the above m-file is executed (Program 3), a dialog window will appear asking for
the file’s name to be created and will contain the 512 points of the hypothetical signal. If the
name is decided to be signal_200_7k_14k.h. the file will look like Figure 119.

Figure 119. The file signal_200_7k_14k.h that contains the 512 points of the hypothetical signal

The hypothetical signal that will be crated by the m-file is presented in Figure 120. The 512-
point FFT of the hypothetical signal is presented in Figure 121. It is concluded that the
generated signal actually contains three the three sinusoidals (200Hz, 7kHz and 14kHz)

Figure 120. The hypothetical signal

122 4. Applications

Figure 121. The 512-point FFT of the hypothetical signal

L

AT AB results of the equalizer M

 The m-file shown below calculates and represents the output of each filter of the
equalizer when the input is the signal of Figure 120.

close all;
clear all;

f1=200; f2=7000; f3=14000; %Sinusoidals frequencies
fs=48000; %Sampling frequency

%Generation of hypothetical signal
t = 0:1/fs:10;
x1 = sin(2*pi*t*f1);
x2 = sin(2*pi*t*f2);
x3 = sin(2*pi*t*f3);
x = round(((x1 + x2 +x3)/3)*(2^15-1)); tot
xs = xtot(1:(10*fs));
xs1= xtot(1:512);

%Low-pass filtering
[b,a]=butter(2,2*5500/fs);
y1=filter(b,a,xs1);
figure;
plot(y1);

%Band-pass filtering
[b,a]=butter(1,[2*5500/fs 2*11000/fs]);
y2=filter(b,a,xs1);
figure;
plot(y2);

%High-pass filtering
[b,a]=butter(2,2*11000/fs,'high');
y3=filter(b,a,xs1);
figure;
plot(y3);

Program 5. The m-file that calculates the filters’ output

LabVIEW to CCS Link 123

 The filters’ outputs of the equalizer that are presented in Figures 122, 123 and 124
corresponds to the equalizer’s output when the amplification in each filter’s frequency band is
1, while the amplification to all others bands is 0

Figure 122. The output of the low-pass filter

Figure 123. The output of the band-pass filter

Figure 124. The output of the high-pass filter

4.1.4 Implementation of the graphical equalizer in CCS

 The graphical equalizer that is going to be implemented in CCS for DSKC6713 will
have as an input the hypothetical signal, created in paragraph 4.1.3. The hypothetical signal is
being used in order to compare the results of the equalizer with those raised from MATLAB
to confirm its accurate function. Furthermore, by using this hypothetical signal, the function
of the equalizer is becoming more understandable to the user - student.
 The C code of the sim_equ3_rtdx.c, implementing the three-band graphical equalizer, is
shown below.

124 4. Applications

// Includes

#include <rtdx.h> // Defines RTDX target API calls
#include "target.h" // Defines TARGET_INITIALIZE()
#include "equalizer.cof" // Filters coefficients
#include "signal_200_7k_14k.h" // Input signal

// Defines

#define sgain 32768 // Compensates for the out sample shifting
#define S 512 // Length of input signal

// Global variables

float f0_dly[2*sections] = {0.0}; // 1st filter delay line
float f1_dly[2*sections] = {0.0}; // 2nd filter delay line
float f2_dly[2*sections] = {0.0}; // 3rd filter delay line

short gains[3] = {0, 0, 0};

int fsignal[S];

// Functions

float iir_cas5(float input, float *c, float *d, int n)
{
 float k0;
 float temp;
 int i;

 temp = input;
 for (i=0; i<n; i++)
 {
 k0 = temp + c[5*i+1]*(d[2*i+1]) + c[5*i+0]*(d[2*i+0]);
 temp = c[5*i+4]*(d[2*i+1]) + c[5*i+3]*(d[2*i+0]) + (c[5*i+2]*k0);

 d[2*i+1] = d[2*i+0];
 d[2*i+0] = k0;
 }
 return temp*sgain;
}

//Defines RTDX channels

RTDX_CreateOutputChannel(signal_chan);
RTDX_CreateOutputChannel(fsignal_chan);
RTDX_CreateInputChannel(gains_chan);

// Main

void main()
{
 float input_sample;

LabVIEW to CCS Link 125

 int j;
 int data_out[3];
 int data_sum;

 TARGET_INITIALIZE();

 RTDX_enableInput(&gains_chan);
 RTDX_enableOutput(&fsignal_chan);
 RTDX_enableOutput(&signal_chan);

 fsignal[0]=0;

 while(1)
 {

 RTDX_read(&gains_chan, gains, sizeof(gains));

 for (j=1; j<S; j++)
 {
 input_sample = (float)(signal[j]/10);

 data_out[0] = (int)(gains[0]*iir_cas5(input_sample, coefs0, f0_dly, sections));
 data_out[1] = (int)(gains[1]*iir_cas5(input_sample, coefs1, f1_dly, sections));
 data_out[2] = (int)(gains[2]*iir_cas5(input_sample, coefs2, f2_dly, sections));

 data_sum = data_out[0] + data_out[1] + data_out[2];
 fsignal[j] =(int)(((data_sum)>>15));
 }

 RTDX_write(&signal_chan, signal, sizeof(signal));
 RTDX_write(&fsignal_chan, fsignal, sizeof(fsignal));
 }
}

Program 5. The C code of the sim_equ3_rtdx.c

 In Program 5, firstly the files rtdx.h , target.h, equalizer.cof and signal_200_7k_14k.h
are included. The file rtdx.h includes the declarations of the functions related to the RTDX
technology. The file target.h includes the declaration of function TARGET_INITIALIZE(),
which initializes the DSP and activates the interrupts so for the RTDX technology to be

function. The filters; outputs after they are amplified properly, they are summed in order to

enabled. The file equalizer.cof contains the filters’ coefficients of the equalizer as they were
calculated in MATLAB. The file signal_200_7k_14k.h created in MATLAB and contains
complex signal that will be used as an input to the equalizer.
 Before the declaration of the main() function , the RTDX channels that will transfer
information from and to the DSP, are defined. The channel “gains_chan” transfer a three-
number array to the DSP stating the amplification of each frequency. The channels
“fsignal_chan” and “signal_chan” transfer to the VI, controlled by the DSP, the input and
output signal of the equalizer.
 In main() function, the DSP is initialized, the RTDX technology and the RTDX channels
are enabled. Inside the while structure, after the content of the channel “gains_chan” is read,
the filters’ output of the equalizer is calculated, for every input signal, by calling iir_cas5()

126 4. Applications

calculate the corresponding sample of the output signal of the equalizer. All 512 samples of
the output signal are calculated, and all 512 samples of the input and output signal are written
to the respective RTDX channels.
 The project that will be created in CCS, for the implementation of the equalizer, apart
from the file sim_equ3_rtdx.c that was described above, must also include the files
intvecs.asm, rtdx_buf.c and rtdx.cmd. In file rtdx_buf.c the size of the buffer, that the DSP is
going to use to transfer data using the RTDX technology, is defined. In this particular case the
size of this buffer should be greater than 512*4 + 8 =2056 bytes. The files intvecs.asm,
rtdx_buf.c and rtdx.cmd are developed by TI and they are included in CCS. In the project the
libraries rtdx.lib (or rtdxsim.lib if a simulator is being used) and rts6701.lib) must also be
added. In Figure 125 the View Window of the project in CCS is presented.

Figure 125. The View Window of the equalizer project in CCS

LabVIEW to CCS Link 127

.1.5 Implementation of a VI to control the graphical equalizer

In order to control the graphical equalizer, a VI named Equalizer.vi has been developed.
his VI sets, controls and communicates with the CCS automatically, so it orivdes the user

plification of each frequency band without interruptin the
er,also can watch the input and output signals of the equalizer

t any time.

4

T
with the capability to alter the am
function of the equalizer. The us
a

The front panel of the Equalizer.vi

 In Figure 126 the front panel of the Equalizer.vi that controls the equalizer is presented.

Figure 126. The front panel of Equalizer.vi that controls the graphical equalizer

 At the front panel there are three sliders named “Low_pass”, “Band_pass” and
“High_pass” determining the amplification of the respective frequency band. Below these

ents named “gains”. Each element
io button has also been placed that

nulls the value of the respective slider and deactivates it. The Radio Buttons’ names are
Low_pass_mute”, “Band_pass_mute” and “High_pass_mute”. The “Stop” button terminates

the equalizer’s output signal. The
dicator “Output & Input signals” depicts the input (green color) and output (red color) signal

simultaneously.

sliders an array has been placed with thr
corresponds to a slider’s value. Below of the sliders a rad

ee elem

“
the function of the VI, when pushed. The indicator “Build Result” shows the results of the
build process of the project in CCS. The indicator “Input_signal” depicts the equalizer’s input
signal; similarly the indicator “Output_signal” depicts
in

128 4. Applications

The block diagram of the Equalizer.vi

 The block diagram of the Equalizer.vi, shown in Figure 127, has been separated into
four phases, in order for its function to become more understandable.

Figure 127. The block diagram of the Equalizer.vi

In the first phase of the block diagram, shown in Figure 128, the CCS
the DSKC6713 is to be used.

 is being set up so

Figure 128. The first phase of the block diagram of Equalizer.vi

 The subVI CCS_ Setup_Open.vi loads the CCStudio Setup without being visible by the
user, because in the input Visible of the subVI a Boolean constant has been connected with
value False. The CS_Setup_ Clear.vi clears all previous settings from the CCStudio Setup.

he CCS_Setup_Add_ Bo s to the CCStudio Setup
cor

he DSKC6713.
In the second phase of the block diagram, shown in Figure 129, the actions that have to

be made, in order for the DSKC6713 to start the execution of the program (the equalizer), are
automated.

T
a

ard.vi loads the DSKC6713 driver
c ding to the path indicated by the constant “Path”, since it is connected with the input

“Driver Path” of the subVI. The CCS_Setup_Save.vi saves the settings made and the CCS_
Setup_Close.vi closes the CCStudio Setup.vi. In this point the first phase of the Equalizer.vi
has been completed. Therefore, the CCS is now set to use t

LabVIEW to CCS Link 129

Figure 129. The second phase of the block diagram of Equalizer.vi

 The Equalizer.vi should be saved in the same folder that the CCS project has also been
saved, so for the path of the project to be correct. The Current VI’s Path.vi outputs the path of
the Equalizer.vi that is given as input to the Strip Path.vi. The output “stripped path” of the
Strip Path.vi contains the path that was given as input without the past part of it. For example,

 which is sim_equ3_rtdx.pjt. The Build Path.vi outputs in “appended

 C:\dsp_applications\DSKC6713\
im_equ3_rtdx The content of the output “appended path” would be
:\dsp_applications\DSKC6713\ sim_equ3_rtdx\ sim_equ3_rtdx.pjt. The output “appended

The output of the Path
e CCS_Open_Project.vi. In this way

e CCS_Open_Project.vi takes the input of the CCS project as long as the Equalizer.vi has

sult.vi outputs the

 be 2056 bytes, the constant “Num Of Buffers” defines the
umb

second phase of the block
iagram is completed with the CCS_Run.vi, which through CCS, commands the DSP initiate

the execution of the program.
e block diagram of Equalizer.vi, shown in Figure 130, comprises

e main code of the VI. The third phase is the content of the While structure, that allows

if the path of the Equalizer.vi was C:\dsp_applications\DSKC6713\sim_equ3_rtdx\
Equalizer.vi then the output “striped path” of the Strip Path.vi would contain the path
C:\dsp_applications\DSKC6713\ sim_equ3_rtdx. The output “striped path” of the Strip
Path.vi is connected with the input “Base Path” of Build Path .vi. In input “name or relative
path” of the Build path .vi the string constant “project name” is connected, that includes the
name of the CCS project,
path” a new path that consists of the input “Base Path” and the content of input “name or
relative path”. If the content of input “Base Path” is
s
C
path” of Build Path.vi is converted to string using the Path to String.vi.
to String.vi is connected to input “Project Path IN” of th
th
been saved in the same folder as the CCS project. This pattern is followed to VIs that use file
paths in order to be transferred to different work stations without any extra modifications.
 The CCS_Open.vi loads the CCS and the CCS_Open_Project.vi loads the CCS project
according to the path included in input “Project Path In”. The CCS_Connect.vi connects the
CCS with the board, which is the DSKC6713. The CCS_DSP_Reset.vi resets the board. The
CCS_Build.vi orders the CCS to build the project that was loaded, so for the executable file
will be generated. The build process is completed, the CCS_Build_Re
building result to the indicator “Build Result”. While no errors have occurred during the
building process, the CCS_Download.vi orders the CCS to download the executable code to
the DSP. Because the project uses the RTDX technology the CCS_RTDX_Enable.vi is used,
that enables and controls the RTDX parameters. The constants cluster “RTDX Settings” that
is connected to the respective input of the CCS_RTDX_Enable.vi contains the settings related
to the RTDX technology. The constant “Buffer Size” defines the size of the host buffer that is
going to be used and it will
n er of the host buffers, that will be 4 and the constant “Mode” defines the RTDX method
that will be used, which is the Non Continuous one. Finally the
d

 The third phase of th
th

130 4. Applications

constant communication of the VI with the DSP, until some error occurs or until the user
pushes the “Stop” button.

 The third phase of the block diagram of Equalizer.vi

 _pass”, “Band_pass” and “High_pass” are connected to the
B array (sliders’ array) with three elements. The first array
el lider “Low_pass”, the second contains the value of slider
“B
 ute” whe
th in the front panel by the user) should coause
th to null and to disable the slider. When the
R selected) should cause no change to the respective
sl the slider if it is disabled. The function of the
R on “Low_pass_mute” will be analysed.
 e control input of the corresponding Case
st e value of “Low_pass_mute” is True, the True case
of n which the first element of the sliders array, that
co will take the value 0 and the slider’s attribute “Disabled”
w in the sliders arry changes with the use of the
Replace Array Subset.v “Low_pass_mute” is False (not selected) the
F array is not affected and

Figure 130.

The sliders’ terminals “Low
uild Array.vi that creates an

ment contains the value of se
and_pass” and th ethord one contains the value of slider “High_pass”.

The Radio Buttons “Low_pass_mute”, “Band_pass_mute” and “High_pass_m
e have a True value (meaning they are selected
e respective slider’s value in the sliders array
adio Buttons have a False value (are not
ider’s value εν while they should enable
adio Buttons is identical, so only the Radio Butt

The “Low_pass_mute” is connected to th
ructure, shown in Figure 131. When th
 the Case structure will be executed, i
rresponds to slider “Low_pass”,
ill take the value 2. The elements’ value

i. When the value of
alse case of the Case structure will be executed, in which the sliders

LabVIEW to CCS Link 131

the attribute “Disabled” of slider “Low_pass” will take the value 0. The sliders’ attribute
“D if the respective slider will be enabled or disabled. If the attribute
“Disabled” takes the value 0 the respective slider will be enabled, while if it takes the value 2
it will be disabled and turn into gray. This is the way that all other Radio Buttons work.

isabled” defined

 (a) (b)

 structure controlled by the Low_pass_mute (a) True case (b) False case

 The indicator “gains” represents the sliders’ array, by taking into consideration the
v e sliders’ array after it is multiplied by the constant 10 using
the Multiply.vi it is converted to an array the elements of which are 2-byte (16 bits) signed
integer i. The To Word Integer.vi output contains now the data to be
transferred to the DSP and they represent the amplification of each frequency band of the
eq liz
 T VI to the DSP and vice versa is achieved in Flat Sequence
st tu he structure, the RTDX_Write.vi has been placed, in which
th T selected allowing arrays consisting of 2-byte (16 bits)
signed integers to be send. In input “Data” of the RTDX_Write.vi the output of To Word
Integer.vi is connected that contains the data to be send. The string constant “Channel” that is
co ec data transfer the RTDX channel
“g s_
 In ce structure a delay of 1500 msec is occurred
during the f hile in this time period, the DSP should receive the
d p rocess results to the VI through the respective RTDX
ch ne from and to the DSP (which is the most time consumed
process) depends on the capabilities of the specific work station, so the above time period
could be easily reduced. The function delay of the VI is achieved using the Wait(ms).vi. The
arithme “milli s the time-delay of the VI.
 In Sequence structure, data sent by the DSP are received and
represented. The RTDX_Read.vi in which the RTDX_Read_SA_I2 choice is selected reads
data by the RTDX channel indicated by the string constant “Channel”, which are the data in
RTDX channel “signal_chan”. The RTDX channel “signal_chan” contains a 512-element
array (2-byte signed integers) th The output “Data” of the
R represents input signal. The
output “Data” is connected to the input of “To Long Integer” in order for the elements of the
array to be converted to 4-byte signed integers. The RTDX_Read.vi is called again to but
now the RTDX_Read_SA_I4 choice is selected, to read the data in the RTDX channel
indicated by the constant “Channel1” , which are the data in the RTDX channel “fsignal”. The
RTDX channel “fsignal” transfers a 512-element array (4-byte signed integers) representing
the output signal of the equalizer. The output “Data” of the RTDX_Read.vi is connected to
the indicator “Output_signal” to represent the output signal. The output “Data” of the

Figure 131. The Case

alues of the Radio Buttons. Th

s using the Word Integer.v

ua er.
he data transfer from the

ruc re. In the first Frame of t
e R DX_Write_SA_I2 choice is

nn ted to the RTDX_Write.vi indicates that for the
ain chan” is used.

 the second Frame of the Flat Sequen
unction of the Equalizer.vi. W

an pata, rocess them d send the
n ls. The data transfer speeda

tic constant connected to input seconds to wait” define
 the third Frame of the Flat

at represents the input signal.
TDX_Read.vi is connected to the indicator “Input_signal” that

132 4. Applications

RTDX_Read.vi and the output of the To Long Integer.vi are connected to inputs of Build
Array.vi. The Build Array.vi creates a two-dimension array and its output is connected to the
indicator “Output & Input signals” in order to represent the input and output signal of the
eq
 ce is completed a check is being made
to n was pushed in order to terminate the
p the block diagram of the Equalizer.vi). This is
the reason why the “Status” outputs of the output cluster “error out” that is returned from the
F e Stop” puts
o O s the
True value if any error occurs or if the “Stop” button is pushed. The output of the Or.vi is
co ec e Or.vi is
True the While structure is not going to be executed again otherwise the process that was just
describ third phase of the Equalizer.vi is
co
 , shown in Figure 132, the termination of the
project and the CCS is being done.

ualizer, simultaneously.
After the third Frame of the structure Flat Sequen

 see if any error occurred or if the “Stop” butto
ro of the While structure (third phase ofcess

la q nce structure and the terminal icon of the “ button are connected to the in
i. The Or.vi works just like an OR gate, therefore the output of the Or.vi take

t S ue
f the r.v

nn ted with the conditional terminal of the While structure, so if the output of th

ed will be repeated. In this point, not only the
mpleted but the maid code of the VI as well.

In the fourth phase of the Equalizer.vi

Figure 132. The fourth phase of the block diagram of the Equalizer.vi

 The CCS_DSP_Halt.vi commands the DSP, through CCS, to stop the execution of the
program, while the CCS_RTDX_Disable.vi disables the RTDX technology. The
CCS_Close_Project.vi closes the CCS project and the CCS_Close.vi closes the CCS. In this
point the fourth and final phase of the Equalizer.vi is completed.

LabVIEW to CCS Link 133

4.1.6 Results – Conclusions

 r ison is going to be
m en e qualizer.vi and the
output of the respective filters in MATLAB.
 e 133 the front panel of the Equalizer.vi is presented, when it functions and the
am the low frequencies is selected to be 1, while the amplification of the middle-
range and high frequencies is 0.

In orde to control the function of the graphical equalizer, a compar
ade, betwe the output, for different slid rs’ values, as represented in E

In Figur
plification of

Figure 133. The front panel of the Equalizer.vi

In Figure 134 the input shown as represented by the
qualizer.vi and in MATLAB. F

 signal of the equalizer is
rom Figure 134 is concluded that the input signal is exactly E

the same in both cases.

 (a) (b)

Figure 134. The input signal of the equalizer (a) in Equalizer.vi (b) in MATLAB

 When the amplification of the low-frequencies is selected to be 1, while the
amplification of the middle-range and high frequencies is 0, the output signal of the equalizer
is the output of a low-pass filter as the Figure 135 shows.

134 4. Applications

 (a) (b)

Figure 135. (a) The output signal of the equalizer in Equalizer.vi
(b) The output of the low-pass filter in MATLAB

 In Figure 136 the front panel of the Equalizer.vi is presented when it functions and the
amplification of the middle-range frequencies is selected to be 1, while the amplification of
the low and high frequencies is 0.

Figure 136. The front panel of the Equalizer.vi

 When the amplification of the middle-range frequencies is selected to be 1, while the
amplification of the low and high frequencies is 0, the output signal of the equalizer is the
output of a band-pass filter as Figure 137 shows.

 (a) (b)

Figure 137. (a) The output signal of the equalizer in Equalizer.vi

(b) The output of the band-pass filter in MATLAB

LabVIEW to CCS Link 135

 In Figure 138 the front panel of the Equalizer.vi is presented when it functions and the
amplification of the high frequencies is selected to be 1, while the amplification of the middle-
range and low frequencies is 0.

Figure 138. The front panel of Equalizer.vi

 When the amplification of the high frequencies is selected to be 1, while the
amplification of the middle-range and low frequencies is 0, the output signal of the equalizer
is the output of a high-pass filter as the Figure 139 shows.

 (a) (b)

Figure 139. (a) The output signal of the equalizer in Equalizer.vi
(b) The output of the high-pass filter in MATLAB

 From the above Figures it can be easily concluded that the graphical equalizer described
above functions properly since results of the Equalizer.vi and MATLAB are in perfect match.
 ign a tenth -or more- band graphical equalizer in MATLAB, firstly the m-
fi t be altered to meet the new
sp ilters’ coefficients
sa
 m ly,
f1 in
paragraph 4.1.4. Furthermore the gains and data_out arrays must have as many elements as
th ents). The
fu cas5() and no modification is needed, while
it e the main bands. The

In order to des
le that calculates the filter’s coefficients of the equalizer, mus
ecifications. For the creation of the file that will contain the f
ve_equ_coefs() function will be used without any modification.

In order to design a tenth -or ore- band graphical equalizer in CCS, the delays (f0_d
dly, f2_dly etc.) for each filter must be defined in the C code of the project, described_

e bands of the equalizer (for a tenth-band equalizer they should have ten elem
nction that implements the IIR filters is the iir_

 must be called insid function as many times as the equalizer’s

136 4. Applications

computation of each output sample of the equalizer is made by the sum of all filters’ results
(t
 e tenth -or more- band graphical equalizer in LabVIEW, the
Equalizer.vi, described in paragraph 4.1.5, should be properly modified. In the front panel of
the Equalizer.vi the number of the sliders, the Radio Buttons and the “gains” array’s elements
must be equal to the equalizer’s bands. In the block diagram, the pattern presented for the
“L _pass_mute”, should be repeated for each
sl
 abov qualizer can be easily
be converted in a tenth -or more- band graphical equalizer.

4 plication

 that will be described below deals with
im ple image processing algorithms on DSKC6713 controlled by a GUI
that is created in LabVIEW. In this application, the histogram equalization on a color image
ca erse Discrete Cosine
Transform ore, an image will be
en de an s oticed that the image as
w l as s UI.
 Form n ed, therefore the project
an the re i by the DSP is selected
through the GUI. The ima ocess through one or
th h d ough should create one
h hat will contain the grayscale image or three header files that will contain the R, G
an he colored image. The processing results are transferred to the GUI
u logy.
 CCS project for each algorithm as well as
th ed thoroughly.

4.2.1 Edge Detection

 st simple image processes is the edge detection. Edges are detected in
points, where obvious differences in brightness, between neighbor pixels of an image, appear.
T achie ith a linear filter which is
an ve is calculated along the
im to be maximum, corresponds to its edges.
 in every direction is archived by correlating the image
w thing more than a 3x3 window (or mask) which scans
se already known, the edges are computated in two directions
(h r each.
 he most common pattern for edge detection is the Sobel edge detector. In fact it is the
co la that will find the edges on it.

he results of the iir_cas5() function).
In order to control th

ow_pass” slider, and the Radio Button “Low
er and Radio Button. id

With the modifications described e, the three-band graphical e

.2 A Digital Image Processing Ap

The digital image processing application
plementation of sim

n be ea ily accomplished, while edge detection or direct and inv
T b l

s
 – DC will e app ied on a grayscale image. Furtherm

co d d decoded according to the JPEG standard. It mu t be n
e l it type and the processing algorithm are selected through the G

 each processing algorithm a CCS project has bee creat
d spective code that w ll be loaded to CCS and executed

ge is loaded to the DSP during the building pr
ree e er files accor ing to the type of the image. The GUI th ad

eader file t
d B components of t
ng the RTDX technosi

In the following paragraphs the creation of the
o th GUI i LabV scribe development f e n IEW is de

One of the mo

he detection of these edges is ved by correlating the image w
approximation of the first derivative, since if the first derivati

age, then the points where it is appeared
Therefore, the edge detection

ith a linear filter. This filter is no
quentially all the image. As
orizontal and vertical), one 3x3 window is required fo

T
rre tion of two 3x3 masks (Figure 140) with an image

LabVIEW to CCS Link 137

 -1 -1-2 -1 0 1

0 0 0 2-1 0

1 12 -1 0 1

)

Implementation of Sobel edge detection

 he C code of the DSP_Sobel_rtdx.c that implements the Sobel edge detection on a
grayscale image is presented below.

(a (b)

re 140 Sobel masks for edge detection on an image: Figu
(a) along vertical direction (Gy) and (b) along horizontal direction (Gx)

T

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <rtdx.h> /* RTDX_Data_Read */
#include <stdio.h> /* printf */
#include "target.h" /* TARGET_INITIALIZE */

#define IMAGE_SIZE 65536
#def e Hin 256
#define W 256
#define MAX_MESSAGES 256
e e AX_ELEMENTS 256 d f Min

#include "scenary.h" /* contains input image as a 1D array */

#pragma DATA_SECTION (image_in, "IM_in")
#pragma DATA_SECTION (image_out,"IM_out")
#pragma DATA_SECTION (Gx, "Gx_var")
#pragma DATA_SECTION (Gy, "Gy_var")
#pragma DATA_SECTION (message, "msg_var")

unsigned char image_in[IMAGE_SIZE];
unsigned char image_out[IMAGE_SIZE];
unsigned char Gx[IMAGE_SIZE];
unsigned char Gy[IMAGE_SIZE];
unsigned char message[MAX_ELEMENTS];

RTDX_CreateOutputChannel(ochan); /* Channel to use to write data */

// Find Sobel edges

void Sobel_edges()
{
 int i;
 int w00, w01, w02;
 int w10, w12;

138 4. Applications

 int w20, w21, w22;
 int x_edge, y_edge;
 int f_edge ;

 for(i=0; i<IMAGE_SIZE; i++) // Clear arrays
 {
 Gx[i] = 0;
 Gy[i] = 0;
 image_out[i] = 0;
 }

 for (i=0; i<(W*(H-2)-2); i++)
 {
 w00 = image_in[i];
 w01 = image_in[i+1];
 w02 = image_in[i+2];
 w10 = image_in[W+i];
 w12 = image_in[W+i+2];
 w20 = image_in[(2*W)+i];
 w21 = image_in[(2*W)+i+1];
 w22 = image_in[(2*W)+i+2];

 x_edge = - w00 - 2*w10 - w20 + w02 + 2*w12 + w22 ;
 y_edge = - w00 - 2*w01 - w02 + w20 + 2*w21 + w22 ;
 f_edge = (abs(x_edge) + abs(y_edge))/2 ;

 if (f_edge>255) f_edge = 255;
 if (f_edge<0) f_edge = 0;

 image_out[i+1] = f_edge;

 if (x_edge>255) x_edge = 255; // View Gx & Gy edges
 if (x_edge<0) x_edge = 0;
 if (y_edge>255) y = 255; _edge
 if (y_edge<0) y_edge = 0;
 Gx[i+1] = x_edge;
 Gy[i+1] = y_edge;
 } // end for loop
}

// Main program

void main ()
{
 int i, j;

 TARGET_INITIALIZE(); // Target initialization for RTDX

 Sobel_edges();

 RTDX_enableOutput(&ochan); // Enable the output channel, "ochan"

 for (i=0; i<IMAGE_SIZE; i+=MAX_ELEMENTS)
 {
 for (j=i; j<(i+MAX_ELEMENTS); j++)

LabVIEW to CCS Link 139

{
 message[j-i] = (unsigned char) image_out[j]; //write one row (256 elements)
 }

 if (!RTDX_write(&ochan d the data to the host , message, sizeof(message))) //Sen
 {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
 }

 puts("\n Program Completed!");

} // End main program

. The C code of the DSP_Sobel_rtdx.c

 6 the files stdlib.h, string.h, math.h, rtdx.h, stdio.h, target.h, and scenary.h
ar e rtdx.h contains the declarations of the functions related to the RTDX
technology. The target.h contains the declaration of the TARGET_INITIALIZE() function
that initializes the DSP and activate s the interrupts in order to enable the RTDX technology.
The scenary.h the image to be processed with dimension of 256 x 256 pixels. The #pragma
d related to the image are saved. The
allocation of the DSP memory is achieved by the rtdx_sobel.cmd (Program 7)
 main() function the RTDX channel “ochan” is defined that
w a sing result from DSP to GUI. The channel “ochan” transfers from DSP
an presents a line from the final image, to GUI.
 and the RTDX technology is
en the Sobel_edges() function, which
is declared right before the main() function. The RTDX channel output “ochan” is enabled
an GUI. This transfer of the final image is
carried ou final image is written to the
RTDX channel.

Program 6

In Program
included. The

irectives define the memory areas, where the arrays

Before the declaration of the
ill tr nsfer the proces
 array of 256 numbers, that re

In the main() function, firstly the DSP is initialized
d hen the edges of the image are detected by using able . T

d the image is being transferred from the DSP to
t gradually meaning that each time only one line of the

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{
 VECS: o=00000000h l=00000200h /* interrupt vectors */
 PMEM: o=00000200h l= mem */ 0000FE00h /* Internal RAM (L2)
 BMEM: o=80000000h l=01000000h /* CE0, SDRAM, 16 Mbytes */
}

SECTIONS

140 4. Applications

{
 .intvecs > 0h
 .text > BMEM
 .rtdx_text > BMEM
 .far > BMEM
 .stack > BMEM
 .bss > BMEM
 .cinit > BMEM
 .pinit > PMEM
 .cio > BMEM
 .const > BMEM
 .data > BMEM
 .rtdx_data > BMEM
 .switch > BMEM
 .sysmem > BMEM

 IM_in > BMEM
 IM_out > BMEM
 Gx_var > BMEM
 Gy_var > BMEM
 msg_var > BMEM
}

Program 7. The rtdx_sobel.cmd

 be created for the edge detection on a grayscale image is
R t from the files DSP_Sobel_rtdx.c and rtdx_sobel.cmd decribed
ab t was developed by TI and is included in CCS, should also be
added. For the DSP_Sobel_rtdx.c the local optimization File (-ο3) is selected. Furthermore,
th sim.lib if a simulator is used) and rts6701.lib should be added as
well. In Figure 141 the View Window of the CCS project is presented.

The project that will
TDX_Sobel_edges.pjt. Apar
ove, the intvecs.asm, tha

e libraries rtdx.lib (or rtdx

obel_edges.pjt Figure 141. The CCS View Window for the RTDX_S

LabVIEW to CCS Link 141

.2.2 Direct and Inverse Discrete Cosine Transformation

e from the spatial domain to the frequency domain, because of it’s

ficients are called AC coefficients and they cover very small percentage of energy
mp

 high

ich is
tually the DC coefficient, few of the neighbor AC coefficients (AC01, AC10, AC11, etc). The

rest AC coefficients, mainly in high frequencies are redundant information and they can be
re es) during quantization.

4

 The Discrete Cosine Transform or DCT represents the most common option for the
transformation of an imag
attributes such as the energy compaction. This is the reason why it is adopted by the most
coding standards regarding not only still images, like JPEG and ΜPEG-7, but the video like
MPEG-1, MPEG-2 and MPEG-4, as well.

One of the characteristics of the DCT is the energy compaction. This means that when it
is applied in every 8x8 block of the image, the major percentage of the energy is compacted to
low frequencies and especially to the 1ο coefficient of each block, called DC coefficient. The
rest 63 coef
co ared to the DC coefficient. The arrangement of the 8x8 DCT coefficients is shown in
Figure 142.
 The low frequencies are located to the upper left corner of the block, while the
frequencies are located to the lower right corner of the block. The energy of a DCT coefficient
corresponds actually to the information included, so the DC coefficient is the one that contain
the major percentage of information of each 8x8 block, while the AC coefficients contain a
very small percentage of the information that corresponds to the details of the 8x8 block of
image. Therefore, by applying the DCT in every 8x8 block of an image, the energy (and
consequently the information) of each block is compacted to the low frequencies, wh
ac

moved (take 0 valu

64 DCT coefficients

DC ACAC 0201

A

A

C AC AC121110

C AC AC222120

ure 142. Arrangement of DCT coefficients in each 8x8 block

 ension DCT is a very demanding algorithm, since it requires a great
n s and abstractions). So, the implementation
of the 2D-DCT on an image based on its definition (equation 9.1) has no meaning at all, since
it carried out with two 1D-
D age. This implementation is
consider to be slow (seconds), but it is though fastest than the direct implementation of the
2 that implements the DCT, based on McGovern’s algorithm
is
 In order to control the accurate function of the algorithms, apart from the direct DCT,
th DCT belongs to the orthogonal transformations,
a basic attribute of eans that by expressing the DCT as a
p

Fig

The two-dim
umber of calculations (additions, multiplication

 cannot be applied in real-time. For this reason, the 2D-DCT is
CTs first on lines and then on rows of each 8x8 block of the im

D-DCT. An optimized algorithm
 presented below.

e inverse DCT (IDCT) is also applied. The
 which is the reversibility. This m

roduct of arrays, meaning D΄ = W*D (where W is the transform array, D is the array of data)

142 4. Applications

and multiplying with the inverted transformation array WT, the initial array D is obtained
again. So by applying on an image the direct DCT and then the IDCT, the result is the rebuild
of he initial image.

Implementation of the 2D-DCT using the 1D-DCT

 For the implementation of the 2D-DCT using the 1D-DCT, the files Dct_Main_rtdx.c,
d , Idct.c and rtdx_DCTslow.cmd have been created and they are presented
below.
 8 shows the Dct_Main_rtdx.c, in which the stdlib.h, time.h, rtdx.h , stdio.h,
target.h h rtdx.h contains the
declarations of the functions related to the RTDX technology. The target.h includes the
declaration of function TARGET_INITIALIZE(), which initializes the DSP and activates the
interrupts so for the RTDX technology to be enabled. The dct_main.h contains the
d as IMAGE_LEN and BLOCK_LEN and it is presented
in age to be processed with dimension of 256 x 256 pixels.
T eas, where the arrays related to the image are
saved.. The allocation of the DSP memory is carried out in file rtdx_DCTslow.cmd (Program
1
 n() function, the RTDX channel “ochan” that transfers
th ro ss defined. The channel “ochan” transfers from DSP
an array of 256 numbers that represents a
 In X technology is enabled.In
ea 8x f the age, the dire the dct() function. Similarly
th C function. The dct() and idct() functions are going to be
presented below. The RTDX channel output “ochan” is enabled and the image is being
tr er of the final image is carried out gradually
m one line of the final image is written to the RTDX channel.

clu e <stdlib.h>

 t

ct_main.h, Dct.c

Program
, dct_main.h and scenary. are included. The header file

eclarations of some constants, such
he im Program 9. The scenary.h t

he #pragma directives define the memory ar

3)
Before the declaration of the mai

e p ce ing result from DSP to GU, is
line from the final image, to GUI.

 main() function, the DSP is initialized DSP and the RTD
h 8 block o im ct DCT is applied by calling c

e ID T is applied by calling the dct()

ansferred from the DSP to GUI. This transf
eaning that each time only

#in d
#include <time.h>
#include <rtdx.h> // RTDX_Data_Read
#include <stdio.h> // printf
#include "target.h" // TARGET_INITIALIZE

#define DSK6711_cps 150000000 //150 MHz C6711 CPU clock (cps -> Clocks Per Second)

#include "dct_main.h" //Includes and Constants used
#pragma DATA_SECTION (image_in,"myvar0")
#pragma DATA_SECTION (image_out,"myvar1")
#include "scenary.h" //An h file containing input image as a 1D array

unsigned char image_out[IMAGE_SIZE];
sho block[BLOCK_SIZE]; rt

clock_t start, stop;
double duration;

#pr m ATA_SECTION (message, "msg_var") ag a D

RTD _CX reateOutputChannel(ochan); //Channel to use to write data

LabVIEW to CCS Link 143

define MAX_MESSAGES 256 #
#define MAX_ELEMENTS 256

unsigned char message[MAX_ELEMENTS];

//Q12 DCT coefficients (actual coefficient x 2^12)

const short coe[8][8]=
 {
 4096, 4096, 4096, 4096, 4096, 4096, 4096, 4096,
 5681, 4816, 3218, 1130, - 1130, -3218, -4816, -5681,
 5352, 2217, -2217, -5352, -5352, -2217, 2217, 5352,
 4816, -1130, -5681, -3218, 3218, 5681, 1130, -4816,
 4096, -4096, -4096, 4096, 4096, -4096, -4096, 4096,
 3218, -5681, 1130, 4816, -4816, -1130, 5681, -3218,
 2217, -5352, 5352, -2217, -2217, 5352, -5352, 2217,
 1130, -3218, 4816, -5681, 5681, -4816, 3218, -1130
 };

//FUNCTIONS USED

void dct(void); // dct.c
void idct(void); // idct.c

//MAIN FUNCTION
void main()
{
 int row, col, x, y;
 int i,j;

 TARGET_INITIALIZE(); //Target initialization for RTDX

 start = clock();

//FORWARD DCT/ INVERSE DCT
 // block by block processing
 for (row=0; row<IMAGE_LEN; row+= C N) BLO _LEK
 {
 for (col=0; col<IMAGE_LEN; col+= O EN) BL CK_L
 {
 for (y=0, i=0; y<BLOCK_LEN; y++) // get the block from the input image
 {
 for (x=0; x<BLOCK_LEN; x++, i++)
 block[i] = (short) image_in[(col+x)+(row+y)*IMAGE_LEN];
 }
 dct(); //perform FDCT on this block
 idct(); //perform IDCT on this block
 for (y=0, i=0; y<BLOCK_LEN; y++) // store block to output image
 {
 for (x=0; x<BLOCK_LEN; x++, i++)
 { //Quick fix for errors occurring due to negative a values
 if(block[i]<0) //occurring after IDCT!*/
 image_out[(col+x)+(row+y)*IMAGE_LEN]=(unsigned char) (-block[i]);
 else
 image_out[(col+x)+(row+y)*IMAGE_LEN]=(unsigned char) block[i];

144 4. Applications

 }
 }
 }
 }

 stop = clock();
 duration = (double) (stop - start) / DSK6711_cps;

 RTDX_enableOutput(&ochan); // Enable the output channel, "ochan"

 for (i=0; i<IMAGE_SIZE; i+=MAX_ELEMENTS)
 {
 for (j=i; j<(i+MAX_ELEMENTS); j++)
 {
 message[j-i] = (unsigned char) image_out[j]; //Write one row (256 elements)
 }

 if (!RTDX_write(&ochan, message, sizeof ag //Send the d(mess e))) ata to the host
 {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
 }

 puts("\nProgram Completed!");
 printf("\n %s ", " The algorithm implementation completed in");
 printf("%5.5f %s \n\n", duration, "seconds");
 puts(" Completed Successfully!\n");
}

 clarations of
so 256 and 8
re ith values of
6 ned.

i n

Program 8. The C code of the dct_Main_rtdx.c

In Program 9 the header file dct_main.h is presented, which contains the de
me constants, such as IMAGE_LEN and BLOCK_LEN, with values of
spectively. In addition, the constants IMAGE_SIZE and BLOCK_SIZE (w

5536 and 64) that correspond to image’s size and block’s size used, are also defi

f def DCT_MAIN_H

#define IMAGE_LEN 256
#define IMAGE_SIZE (IMAGE_LEN*IMAGE_LEN)

#define BLOCK_LEN 8
#define BLOCK_SIZE (BLOCK_LEN*BLOCK_LEN)

#endif

9. The dct_main.h header file

nted, which contains the dct() function that implements

the 2D-DCT in an 8x8 block of the image, using the 1D-DCT. In the beginning of the code
th ge_out (they
co arrays block

Program

In Program 10 the Dct.c is prese

e arrays image_in and image_out are declared as extern image_in and ima
the rebuilt image respectively) as well as thentain the data of the initial and

LabVIEW to CCS Link 145

an 4 elements that correspond to the 64 DCT coefficients of
one 8x8 block, while the array coe contains the 64 values of the

d coe. The block array contains 6
() ()[]1612cos' πkikC +

te
 key-word extern, when it is needed to be visible by other

co e project. This is happening in a case where a variable is
ca of the same project. In this specific case, the four arrays
th are visible so they can be used by the Dct.c, Ιdct.c and
D

rms, multiplied by 2 (Q-12 format).
e

12

A variable is declared with th
de files that are included in the sam
lled in more than one C code files
at have been declared as extern
ct_Main.c.

#include "dct_main.h"
extern unsigned char image_in[IMAGE_SIZE];
extern unsigned char image_out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];
extern const short coe[8][8];

void dct(void)
{
 int i,j,x,y;
 int value[8];

 for(j=0;j<8;j++) //perform 1D DCT on the c ns olum
 {
 for(y=0;y<8;++y)
 {
 value[y]=0;
 for(x=0;x<8;++x)
 value[y] += (int)(coe[y][x]*block[j+(x*8)]);
 }
 for(y=0;y<8;++y)
 block[j+(y*8)] = (short)(value[y]>>12);
 }

 for(i=0;i<64;i+=8) // perform 1D DCT on the resulting rows
 {
 for(y=0;y<8;++y)
 {
 value[y] = 0;
 for(x=0;x<8;++x)
 value[y] += (int)(coe[y][x]*block[i+x]);
 }
 for(y=0;y<8;++y)
 block[i+y] = (short)(value[y]>>15);
 }
}

Program 10. The C code of the Dct.c

 ollows, the implementation code of the 2D-IDCT is described. Here,
li in, image_out, block and coe are declard as extern. This
fi 2D-IDCT and replaces to
th with the rebuilt pixels.

In Program 11 that f
ke the direct DCT, the arrays image_
le implements the idct() function, which actually is the 8x8 block

fe block the 64 values of the DCT coefficients the 64 values o

146 4. Applications

#include "dct_main.h"
extern unsigned char image_in[IMAGE_S]; IZE
extern unsigned char image_out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];
extern const short coe[8][8];

void idct(void)
{
 int i,j,x,y;
 int value[8];

 for(j=0;j<8;j++) // perform 1D IDCT the mns on colu
 {
 for(y=0;y<8;++y)
 {
 value[y] = 0;
 for(x=0;x<8;++x)
 value[y] += (int)(coe[x][y]*block[j)]); +(x*8
 }
 for(y=0;y<8;++y)
 block[j+(y*8)] = (short)(value[y]>>12);
 }

 for(i=0;i<64;i+=8) // perform 1D IDCT on the resulting rows
 {
 for(y=0;y<8;++y)
 {
 value[y] = 0;
 for(x=0;x<8;++x)
 value[y] += (int)(coe[x][y]*block[i+x]);
 }
 for(y=0;y<8;++y)
 block[i+y] = (short)(value[y]>>15);
 }
}

 and it is presented in
P

Program 11. The C code of the Idct.c

The memory allocation is completed in rtdx_DCTslow.cmd
rogram 12.

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{

LabVIEW to CCS Link 147

h tors */ VECS: o=00000000h l=00000200 /* interrupt vec
 PMEM: o=00000200h l=0000FE00h /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000 /* CE0, SDRAh M, 16 MBytes */

}

SECTIONS
{
 .intvecs > 0h
 .text > BMEM
 .rtdx_text > BMEM
 .far > BMEM
 .stack > BMEM
 .bss > BMEM
 .cinit > BMEM
 .pinit > PMEM
 .cio > BMEM
 .const > BMEM
 .data > BMEM
 .rtdx_data > BMEM
 .switch > BMEM
 .sysmem > BMEM

 myvar0 > BMEM
 myvar1 > BMEM
}

Program 12. The rtdx_DCTslow.cmd

Figure 143. The View Window of CCS for the RTDX_DCT_Slow.pjt

148 4. Applications

 Window of the CCS project, named RTDX_DCT_Slow.pjt, for
th esented. It should be noticed that these applications
are implemented on a grayscale image, using the 1D-DCT. Apart from the files DCT_Main.c,
D and rtdx_DCTslow.cmd used in this project and described above, the files
intve that was developed by T ust also ization File (-ο3) is
ch h c (ot rtdxsim.lib
fo

Implementing the 2D_DCT using the McGovern algorithm

 plement the 2D-DCT using the McGovern algorithm, the
D Dct.c, Idct.c and rtdx_DCTfast.cmd have been developed and
th
 Main_rtdx.c, which contains the files stdlib.h, time.h, rtdx.h ,
st e scenary.h, is described. The rtdx.h contains the declarations
of the functions related to the RTDX technology. The target.h includes the declaration of
function TARGET_INITIALIZE(), which initializes the DSP and activates the interrupts so
fo e enabled. The dct_main.h that was analyzed in Program 9
co f some constants. The scenary.h contains the 256x256 image to be
p
 the main() function, the RTDX channel “ochan” that will
tr om the DSP to GUI, is defined. The channel “ochan” transfers
fr r bers, that represents a line from the final image, to GUI.
 e DSO is initialized and the RTDX technology is
enabled. In each 8x8 block of the image the direct DCT is applied,by calling the dct() function
and the and IDCT, by calling the idct() function. The dct() and idct() functions will be
presebted below. The RTDX channel output “ochan” is enabled and the image is being
transferred from the DSP to GUI. This transfer of the final image is carried out gradually
m aning that each time only one line of the final image is written to the RTDX channel.

In Figure 143 the View
e direct DCT and IDCT application is pr

ct.c, Idct.c
cs.asm I, m be used. The local optim

osen for e DCT_Main. , Dct.c and Idct.c. In addition, the librat ries rtdx.lib
r simulator use) and rts6701.lib, must be added as well.

In order to im
ct_Main_rtdx , dct_ma.c in.h,

edey are analyz below.
In Program 13 the Dct_

.h and dio.h, targ t.h, dct_main

r the RTDX technology to b
ntains the declarations o

rocessed.
Before the declaration of

ansfer the process results fr
om DSP an ar ay of 256 num

In the main() function, firstly th

e

#include <stdlib.h>
#include <time.h>
#include <rtdx.h> // RTDX_Data_Read
#include <stdio.h> // printf
#include "target.h" // TARGET_INITIALIZE

#define DSK6711_cps 150000000 // 150 MHz C6711 CPU clock (cps -> Clocks Per Second)

#include "dct_main.h" // Includes and Constants used
#pragma DATA_SECTION (image_in,"myvar0")
#pragma DATA_SECTION (image_out,"myvar1")
#include "scenary.h" // An h file containing input image as a 1D array

unsigned char image_out[IMAGE_SIZE];
short block[BLOCK_SIZE];

clock_t start, stop;
double duration;

#pragma DATA_SECTION (message, "msg_var")

LabVIEW to CCS Link 149

RTDX_CreateInputChannel(ichan); // Channel to receive data from
RTDX_CreateOutputChannel(ochan); // Channel to use to write data

#define MAX_MESSAGES 256
#define MAX_ELEMENTS 256

unsigned char message[MAX_ELEMENTS];

// Q12 DCT coefficients (actual coefficient x 2^12)
const short coe[12]={3135,2217,7568,8410,-1598,6149,-10498,4816,-3686,-12586,8035,-1223};

// FUNCTIONS USED

void dct(void); // dct.c
void idct(void); // idct.c

//MAIN FUNCTION

void main()
{
 int i,j,x;

 TARGET_INITIALIZE(); // Target initialization for RTDX

 start = clock();

//FORWARD DCT/ INVERSE DCT
 //block by block processing
 for(i=0;i<IMAGE_SIZE;i+=BLOCK_SIZE)
 {
 // get the block from the input image
 for(x=0;x<BLOCK_SIZE;++x)
 block[x] = (short) image_in[i+x];

 dct(); // perform FDCT on this block
 idct(); // perform IDCT on this block

 // store block to output image
 for(x=0;x<BLOCK_SIZE;++x)
 {
 if(block[x]<0)
 image_out[i+x]=(unsigned char) (-block[x]); //Quick fix for errors occurring due tο
 else //negative a values occurring after IDCT!
 image_out[i+x]=(unsigned char) block[x];
 }
 }

 stop = clock();
 duration = (double) (stop - start) / DSK6711_cps;

 RTDX_enableOutput(&ochan); //Enable the output channel, "ochan"

 for (i=0; i<IMAGE_SIZE; i+=MAX_ELEMENTS)
 {
 for (j=i; j<(i+MAX_ELEMENTS); j++)

150 4. Applications

 {
 message[j-i] = (unsigned char) image_out[j]; //Write one row (256 elements)
 }

 if (!RTDX_write(&ochan, message, sizeof(message))) //Send the data to the host
 {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
 }

 puts("\nProgram Completed!");
 printf("\n %s ", " The algorithm implementation completed in");
 printf("%5.5f %s \n\n", duration, "seconds");
 puts(" Completed Successfully!\n");
}

on applies the 2D-DCT on a 8x8 block, using the fast 1D-DCT according

Program 13. The C code of the DCT_Main_rtdx.c

In Program 14 the Dct.c is presented, in which the operation of the dct() function is
defined. This functi
to the ΜcGovern algorithm.

#include "dct_main.h"

extern unsigned char image_in[IMAGE_SIZE];
extern unsigned char image_out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];
extern const short coe[12];

void dct(void)
{
 short ADD[20]; /* Table of the addition coefficients */
 int M[12]; /* Table of the results of the ultiplication */ m
 int postadd1,postadd2;
 int i,j;

 for(j=0;j<8;j++)
 { /* first set of additions */
 ADD[0]= (block[j]+block[56+j]); /* x(0)+x(7) */
 ADD[1]= (block[24+j]+block[32+j]); /* x(3)+x(4) */
 DD[2]= (block[8+j]+block[48+j]); /* x(1)+x(6) */ A
 ADD[3]= (block[16+j]+block[40+j]); /* x(2)+x(5) */
 ADD[4]= (block[j]-block[56+j]); /* x(0)+x(7) */
 ADD[5]= (block[48+j]-block[8+j]); /* x(6)-x(1) */
 ADD[6]= (block[24+j]-block[32+j]); /* x(3)-x(4) */
 ADD[7]= (block[16+j]-block[40+j]); /* x(2)-x(5) */

 /* second set of additions, this is done so previous additions do not need to be repeated */
 ADD[8]= (ADD[0]+ADD[1]);
 ADD[9]= (ADD[0]-ADD[1]);
 ADD[10]=(ADD[2]+ADD[3]);

LabVIEW to CCS Link 151

D[DD[3]); ADD[11]=(AD 2]-A
 ADD[12]=(ADD[4]+ADD[6]);
 ADD[13]=(ADD[5]+ [7ADD]);
 ADD[14]=(ADD[9]+ADD[11]);
 ADD[15]=(ADD[4]+ADD[5]);
 ADD[16]=(ADD[12]+ADD[13]);
 ADD[17]=(ADD[6]+ADD[7]);
 ADD[18]=(ADD[8]+ [ADD 10]);
 ADD[19]=(ADD[8]-ADD[10]);

 * Multiplications carried out, note: eight termhere 14. Includes one over root */
 M[0] = (int)(coe[0]*ADD[9]);
 M[1] = (int)(coe[1]*ADD[14]);
 M[2] = (int)(coe[2]*ADD[11]);
 M[3] = (int)(coe[3]*ADD[4]);
 M[4] = (int)(coe[4]*ADD[15]);
 M[5] = (int)(coe[5]*ADD[5]);
 M[6] = (int)(coe[6]*ADD[12]);
 M[7] = (int)(coe[7]*ADD[16]);
 M[8] =(int)(coe[8]*ADD[13]);
 M[9] =(int)(coe[9]*ADD[6]);
 M[10]=(int)(coe[10]*ADD[17]);
 M[11]=(int)(coe[11]*ADD[7]);

 /* post multiplication, additions + subtractions */
 block[j]=ADD[18]; /* y(0) */
 block[32+j]=ADD[19]; /* y(4) */
 block[16+j]=(short)((M[0]+M[1])>>12); /* y(2) */
 block[48+j]=(short)((M[1]-M[2])>>12); /* y(6) */
 postadd1= M[6]+M[7];
 postadd2= M[7]+M[8];
 block[56+j]= (short)((M[3]+M[4]+postadd1)>>12); /* y(7) */
 block[40+j]= (short)((M[4]+M[5]+postadd2)>>12); /* y(5) */
 block[8+j]= (short)((M[9]+M[10]-postadd1)>>12); /* y(1) */
 block[24+j]= (short)((postadd2-M[10]-M[11])>>12); /* y(3) */
 }

 for(i=0;i<64;i+=8)
 {
 /* first set of addtions */
 ADD[0]=(block[i]+block[i+7]); /* x(0)+x(7) */
 ADD[1]=(block[i+3]+block[i+4]); /* x(3)+x(4) */
 ADD[2]=(block[i+1]+block[i+6]); /* x(1)+x(6) */
 ADD[3]=(block[i+2]+block[i+5]); /* x(2)+x(5) */
 ADD[4]=(block[i]-block[i+7]); /* x(0)-x(7) */
 ADD[5]=(block[i+6]-block[i+1]); /* x(6)-x(1) */
 ADD[6]=(block[i+3]-block[i+4]); /* x(3)-x(4) */
 ADD[7]=(block[i+2]-block[i+5]); /* x(2)-x(5) */

 /* second set of addtions, this is done so previous additions do not need to be repeated */
 ADD[8]=(ADD[0]+ADD[1]);
 ADD[9]=(ADD[0]-ADD[1]);
 ADD[10]=(ADD[2]+ADD[3]);
 ADD[11]=(ADD[2]-ADD[3]);
 ADD[12]=(ADD[4]+ADD[6]);

152 4. Applications

DD[5]+ADD[7]); ADD[13]=(A
 ADD[14]=(ADD[9]+ADD[11]);
 ADD[15]=(ADD[4]+ADD[5]);
 ADD[16]=(ADD[12]+ADD[13]);
 ADD[17]=(ADD[6]+ADD[7]);
 ADD[18]=(ADD[8]+ADD[10]);
 DD[19]=(ADD[8]-ADDA [10]);

 /* Multiplications carried out, note: here 14. Includes one over root eight term */
 M[0]= (int)(coe[0]*ADD[9]);
 [1 t)(coe[1]*ADD[14]); M]= (in
 M[2]= (int)(coe[2]*ADD[11]);
 M[3]= (int)(coe[3]*ADD[4]);
 M[4]= (int)(coe[4]*ADD[15]);
 [5 t) e[5]*ADD[5]); M]= (in (co
 [6 t) e[6]*ADD[12]); M]= (in (co
 M[7]= (int)(coe[7]*ADD[16]);
 M[8]=(int)(coe[8]*ADD[13]);
 M[9]=(int)(coe[9]*ADD[6]);
 M[10]=(int)(coe[10]*ADD[17]);
 M[11]=(int)(coe[11]*ADD[7]);

 /* post multiplication, additions + subtractions */
 block[i]=(short)(ADD[18]>>3); /* y(0) */
 block[i+4]=(short)(ADD[19]>>3); /* y(4) */
 block[i+2]=(short)((M[0]+M[1])>>15); /* y(2) */
 block[i+6]=(short)((M[1]-M[2])>>15); /* y(6) */
 postadd1= M[6]+M[7];
 postadd2= M[7]+M[8];
 block[i+7]= (short)((M[3]+M[4]+postadd1)>>15); /* y(7) */
 block[i+5]= (short)((M[4]+M[5]+postadd2)>>15); /* y(5) */
 block[i+1]= (short)((M[9]+M[10]-postadd1)>>15); /* y(1) */
 block[i+3]= (short)((postadd2-M[10]-M[11])>>15); /* y(3) */
 }
}

Program 14. The C code of the Dct.c

 In Program 15 the Idct.c, is presented, in which the operation of the idct()is defined.
This function applies the 2D-DCT on a 8x8 block, using the fast 1D-DCT according to the
Μ .

cGovern algorithm

#include "dct_main.h"

extern unsigned char image_ [IMin AGE_SIZE];
extern unsigned char image_out[IMAGE_SIZE];
extern short block[BLOCK_SIZE];
extern const short coe[12];

void idct(void)
{

LabVIEW to CCS Link 153

t z[8],ADD[7]; shor
 int PA[4];
 int M[13];
 int i,j;

 for(j=0;j<8;j++)
 { /* pre-additions */
 ADD[0]=block[56+j]+block[40+j]; /* y(7)+y(5) */
 ADD[1]=block[56+j]-block[8+j]; /* y(7)-y(1) */
 ADD[2]=block[24+j]+block[40+j]; /* y(3)+y(5) */
 D [3]=block[j]+block[32+j]A D ; /* y(0)+y(4) */
 ADD[4]=block[16+j]+block[48+j]; /* y(2)+y(6) */
 ADD[5]=block[24+j]-block[8+j]; /* y(3)-y(1) */
 ADD[6]=ADD[0]+ADD[5];

 /* multiplications */
 M[0]=(int)(coe[0] * block[16+j]); /* A*y(2) */
 M[1]=(int)(coe[1] * ADD[4]);
 M[2]=(int)(coe[2]*block[48+j]); /* C*y(6) */
 M[3]=(int)(coe[3]*block[56+j]); /* D*y(7) */
 M[4]=(int)(coe[4]*ADD[0]);
 M[5]=(int)(coe[5]*block[40+j]); /* F*y(5) */
 M[6]=(int)(coe[6]*ADD[1]);
 M[7]=(int)(coe[7]*ADD[6]);
 M[8]=(int)(coe[8]*ADD[2]);
 M[9]=(int)(coe[9]*block[8+j]); /* J*y(1) */
 M[10]=(int)(coe[10]*ADD[5]);
 M[11]=(int)(coe[11]*block[24+j]); /* L*y(3) */
 M[12]=(int)(block[32+j]<<1); /* 2*y(4) */

 /* post additions */
 PA[0]=((M[0]+M[1])>>12);
 PA[1]=(int)ADD[3]-M[12];
 PA[2]=M[4]+M[7];
 PA[3]=M[7]-M[10];

 z[0]=ADD[3]+(short)PA[0];
 z[1]=ADD[3]-(short)PA[0];
 z[2]=(short)PA[1]+(short)((M[1]-M[2])>>12);
 z[3]=(short)PA[1]+(short)((M[2]-M[1])>>12);
 z[4]=(short)((PA[2]+M[6]+M[3])>>12);
 z[5]=(short)((PA[2]+M[5]+M[8])>>12);
 z[6]=(short)((PA[3]+M[6]+M[9])>>12);
 z 7]=([short)((PA[3]+M[8]-M[11])>>12);

 block[j]=z[0]+z[4]; /* x(0) */
 block[8+j]=z[2]-z[5]; /* x(1) */
 block[16+j]=z[3]+z[7]; /* x(2) */
 block[24+j]=z[1]+z[6]; /* x(3) */
 block[32+j]=z[1]-z[6]; /* x(4) */
 block[40+j]=z[3]-z[7]; /* x(5) */
 block[48+j]=z[2]+z[5]; /* x(6) */
 block[56+j]=z[0]-z[4]; /* x(7) */
 }
 for(i=0;i<64;i+=8)

154 4. Applications

dditions */ { /* pre-a
 ADD[0]=block[i+7]+block[i+5]; /* y(7)+y(5) */
 ADD[1]=block[i+7]-block[i+1]; /* y(7)-y(1) */
 ADD[2]=block[i+3]+block[i+5]; /* y(3)+y(5) */
 ADD[3]=block[i]+block[i+4]; /* y(0)+y(4) */
 ADD[4]=block[i+2]+block[i+6]; /* y(2)+y(6) */
 ADD[5]=block[i+3]-block[i+1]; /* y(3)-y(1) */
 ADD[6]=ADD[0]+ADD[5];

 /* multiplications */
 M[0]=(int)(coe[0]*block[i+2]); /* A*y(2) */
 M[1]=(int)(coe[1]*ADD[4]);
 M[2]=(int)(coe[2]*block[i+6]); /* C*y(6) */
 M[3]=(int)(coe[3]*block[i+7]); /* D*y(7) */
 M[4]=(int)(coe[4]*ADD[0]);
 M[5]=(int)(coe[5]*block[i+5]); /* F*y(5) */
 M[6]=(int)(coe[6]*ADD[1]);
 M[7]=(int)(coe[7]*ADD[6]);
 M[8]=(int)(coe[8]*ADD[2]);
 [9 (int)(coe[9]*block[i+1]); /* J*y(1) */M =]
 M[10]=(int)(coe[10]*ADD[5]);
 M[11]=(int)(coe[11]*block[i+3]); /* L*y(3) */
 M[12]=(int)(block[i+4]<<1); /* 2*y(4) */

 /* post additions */
 PA[0]=(int)((M[0]+M[1])>>12);
 PA[1]=(int)((ADD[3]-M[12])>>3);
 PA[2]=M[4]+M[7];
 PA[3]=M[7]-M[10];

 z[0]=(ADD[3]+(short)PA[0])>>3;
 z[1]=(ADD[3]-(short)PA[0])>>3;
 z[2]=(short + sh [2])>>15);)PA[1] (ort)((M[1]-M
 z[3]=(short)PA[1 +(sho] rt)((M[2]-M[1])>>15);
 z[4]=(short)((PA[2]+M[6]+M[3])>>15);
 z[5]=(short)((PA[2]+M[5 +M[8 >15);]])>
 z[6]=(short)((PA[3]+M[6]+M[9])>>15);
 z[7]=(short)((PA[3]+M[8]-M[11])>>15);

 block[i+0]=(z[0]+z[4]); /* x[0] */
 block[i+1]=(z[2]-z[5]); /* x[1] */
 block[i+2]=(z[3]+z[7]); /* x[2] */
 lo [i+3]=(z[1]+z[6]); /* x[3] */ b ck
 block[i+4]=(z[1]-z[6]); /* x[4] */
 block[i+5]=(z[3]-z[7]); /* x[5] */
 block[i+6]=(z[2]+z[5]); /* x[6] */
 lock[i+7]=(z[0]-z[4]); /* x[7] */ b
 }
}

. The C code of the Idct.c

 The memory allocation is completed in rtdx_DCTfast.cmd and it is presented in Program
6.

Program 15

1

LabVIEW to CCS Link 155

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{
 VECS: o=00000000h l=00000200h /* interrupt vectors */
 PMEM: o=00000200h l=0000FE00h /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000h /* CE0, SDRAM, 16 MBytes */
}

SECTIONS
{
 .intvecs > 0h
 .text > BMEM
 .rtdx_text > BMEM
 .far > BMEM
 .stack > BMEM
 .bss > BMEM
 .cinit > BMEM
 .pinit > PMEM
 .cio > BMEM
 .const > BMEM
 .data > BMEM
 .rtdx_data > BMEM
 .switch > BMEM
 .sysmem > BMEM

 myvar0 > BMEM
 myvar1 > BMEM
 msg_var > BMEM
}

Tfast.cmd

 the View Window of the CCS project, named RTDX_DCT_Fast.pjt, for the
direct DCT and IDCT application is presented. It should be noticed that these applications are
im ale image, using the 1D-DCT. Apart from the files DCT_Main.c,
D roject and described above, the files
intvecs.asm that was developed by TI, must also be used. The local optimization File (-ο3) is
ch and Idct.c. In addition, the libraries rtdx.lib (ot rtdxsim.lib
for sim

Program 16. The rtdx_DC

Figure 144

plemented on a graysc
ct.c, Idct.c and rtdx_DCTfast.cmd used in this p

osen for the DCT_Main.c, Dct.c
ulator use) and rts6701.lib, must be added as well.

156 4. Applications

Figure 144. The View Window of CCS for the RTDX_DCT_Fast.pjt

4.2.3 JPEG standard encoding and decoding

 JPEG is one of the most common known standards for image encoding. Its full name is
Joint Photographic Experts Group, which is the group that developed it. It is the first
international image compression standard for color as well as grayscale pictures.
 The JPEG standard defines four encoding modes. Of these four modes, the sequential,
the progressive, and the hierarchical are lossy coding modes while the predictive mode is
lossless. In this section, a part of the baseline JPEG coding is described, which follows the
sequential codec because it is the one used more often. In Figure 145 the structure of one
JPEG encoder.

Figure 145. The JPEG encoder

 As shown in Figure 145, the JPEG encoding consists of three main steps: (i) The DCT
transformation, (ii) the quantization) and (iii) the entropy encoding. Some specific operations
on the original image must be done in order for it to enter encoder. The coefficient 128 must
be abstracted from the value of each image’s pixel, shifting the range of luminance values
from [0 255] to [-128 127], with mean value zero. Next, the image is subdivided into 8x8

LabVIEW to CCS Link 157

blocks, where the DCT transform is applied on each block, producing 64 new values that are
called the DCT coefficients (one DC and 63 AC). Any algorithm that implements the DCT
can be used, since the JPEG standard does not define a specific algorithm.
 As it is already explained, the information of each 8x8 block has been limited to low
frequencies, meaning the DC coefficient and some AC around it. Therefore the AC
coefficients, in high frequencies mainly, can be pulled to zero, achieving better compression.
The simplest way of pulling to zero the coefficients that do not carry any important
information, is by dividing them with the appropriate values. This procedure is called
quantization of the DCT coefficients. These values are included in the quantization table
introduced by the JPEG standard, and it is shown in Figure 146. The size of this quantization
table isι 8x8 because a 8x8 image block is processed every time.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

JPEG quantization table
Luminance

e quantization table that corresponds to lumi

Figure 146. Th nance component

 The inverse procedure of quantization is called dequantization and is completed during
the decoding of the image. The dequantization procedure includes the multiplication of the
already quantized coefficients (of every 8x8 block) with the respective values of the
quantization table.
 The third and last step of a JPEG encoder is the entropy encoding as shown in Figure
145. After the quantization of the DCT coefficients, many of them (in high frequencies
mainly) have been pulled to zero. Therefore, the rest coefficients can be encoding using the
Huffman or Arithmetic coding. It is must be noticed, that the DC coefficient of each 8x8
block is encoding in a different way (DPCM) than the AC coefficients (RLE). This is because
the DC coefficients require more bits for its encoding compared to the AC coefficients. The
part of the entropy encoding is not included in the JPEG encoding that follows, so it will not
be described in detail.
After the entropy encoding, a bit sequence will arise, which is the JPEG encoded image (*.jpg
file). In order for someone to see such an image, it must be decoded following the three steps
shown in Figure 147.

10101101111011
01110100101000
00101100100110
101011

JPEG File

JPEG Decoder

DequantizationIDCT
transform

Entropy
Decoding

Reconstructed
image

Figure 147. The JPEG decoder

158 4. Applications

 As shown in Figure 147, The decoding procedure consists of (i) the entropy decoding,
(ii) the dequantization and finally the inverse DCT for the image reconstruction.

Partial Implementation of JPEG image encoding

 In order to implement a part of JPEG encoder and decoder, the jpeg.c and
jpeg_main.h have been developed, and they are described below.
 In Program 17 the jpeg.c is presented, partially implementing the JPEG encoder and
decoder, for a binary 256x256 image. The parts of the JPEG encoder that are implemented are
the direct DCT, as well as the quantization procedure. The parts of the JPEG decoder that are
implemented are the dequantization procedure and the IDCT for image reconstruction.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <rtdx.h> /* RTDX_Data_Read */
#include "target.h" /* TARGET_INITIALIZE */
#include "jpeg_main.h" /* Includes and Constants used */
#pragma DATA_SECTION (image_in,"myvar0")
#pragma DATA_SECTION (image_out,"myvar1")
#pragma DATA_SECTION (array,"myvar2")
#pragma DATA_SECTION (array2,"myvar3")

#include "scenary.h" /* An h file containing input image as a 1D array */
#pragma DATA_SECTION (message, "msg_var")

RTDX_CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX_MESSAGES 256
#define MAX_ELEMENTS 256

unsigned char message[MAX_ELEMENTS];
unsigned char image_out[IMAGE_SIZE];
float array[H][W];
float array2[H][W];
int q_table[8][8] ={ {16,11,10,16,24,40,51,61},
 {12,12,14,19,26,58,60,55},
 {14,13,16,24,40,57,69,56},
 {14,17,22,29,51,87,80,62},
 {18,22,37,56,68,109,103,77},
 {24,35,55,64,81,104,113,92},
 {49,64,78,87,103,121,120,101},
 {72,92,95,98,112,100,103,99}};

float cosine[8][8]= {
 {1.00000, 0.98078, 0.92388, 0.83147, 0.70711, 0.55557, 0.38268, 0.19509 },
 {1 0, 0.83147, 0.38268, -0.19509, -0.70711, -0.98078, -0.92388, -0.55557 }, .0000
 {1.00000, 0.55557, -0.38268, -0.98078, -0.70711, 0.19509, 0.92388, 0.83147 },
 {1.00000, 0.19509, -0.92388, -0.55557, 0.70711, 0.83147, -0.38268, -0.98078 },
 {1.00000, -0.19509, -0.92388, 0.55557, 0.70711, -0.83147, -0.38268, 0.98078 },
 {1.00000, -0.55557, -0.38268, 0.98078, -0.70711, -0.19509, 0.92388, -0.83147 },
 {1.00000, -0.83147, 0.38268, 0.19509, -0.70711, 0.98078, -0.92388, 0.55557 },

LabVIEW to CCS Link 159

 {1.00000, -0.98078, 0.92388, -0.83147, 0.70711, -0.55557, 0.38268, -0.19509 }};

/* image_in 1d --> 2d array */
void read_image()
{
 int i, j;

 for(i=0; i<H; i++)
 for(j=0; j<W; j++)
 {
 array[i][j]=image_in[W*i+j];
 }
}

/* DCT 8x8 blocks by 1-dimensional way. First rows and then columns. */
void dct()
 {
 int x,y,i,m,n;
 float t_array[8];
 float temp,c1;

 /*** 1D DCT on rows ***/
 for(m=0; m<H; m+=8) {
 for(n=0; n<W; n+=8) {
 for(x=m; x<m+8; x++) {
 for(y=n; y<n+8; y++) {
 temp = 0.0;
 for(i=n; i<n+8; i++) {
 temp += array[x][i] * cosine[i-n][y-n];
 }
 if((y-n)==0) c1 = invsqrt2;
 if((y-n)>0) c1 = 1;
 array2[x][y] = (float)(temp * c1/2);
 }
 }
 }
 }

 /*** 1D DCT on cols ***/
 for(n=0; n<W; n+=8) {
 for(m=0; m<H; m+=8) {
 for(y=n; y<n+8; y++) {
 for(x=m; x<m+8; x++){
 temp = 0.0;
 for(i=m; i<m+8; i++){
 temp += array2[i][y] * cosine[i-m][x-m];
 }
 if((x-m)==0) c1 = invsqrt2;
 if((x-m)>0) c1 = 1;
 t_array[x-m] = (float)(temp * c1/2);
 }
 for(i=0; i<8; i++){
 array2[m+i][y] = t_array[i];
 }

160 4. Applications

 }
 }
 }
}

/* Quantization */
void quantization()
{
 int i, j, m, n;

 for(m=0; m<H; m+=8) {
 for(n=0; n<W; n+=8) {
 for(i=m; i<m+8; i++) {
 for(j=n; j<n+8; j++) {
 array2[i][j] = ROUND((float)(array2[i][j]/q_table[i-m][j-n]));
 }
 }
 }
 }
}

/* Dequantization */
void dequantization()
 {
 int i, j, m, n;

 for(m=0; m<H; m+=8) {
 for(n=0; n<W; n+=8) {
 for(i=m; i<m+8; i++) {
 for(j=n; j<n+8; j++) {
 array2[i][j]*=(q_table[i-m][j-n]);
 }
 }
 }
 }
}

/* Inverse DCT 1-dimensional way (idct) */
void idct()
 {
 int x,y,i,m,n;
 float t_array[8];
 float temp,c1;

 /* IDCT on Rows */
 for(m=0; m<H; m+=8) {
 for(n=0; n<W; n+=8) {
 for(x=m; x<m+8; x++) {
 for(y=n; y<n+8; y++) {
 temp = 0.0;
 for(i=n; i<n+8; i++){
 if((i-n)==0) c1 = invsqrt2;
 if((i-n)>0) c1 = 1;
 temp += (float) (array2[x][i] * cosine[y-n][i-n] * c1/2);
 }

LabVIEW to CCS Link 161

 t_array[y-n] = temp;
 }
 for(i=0; i<8; i++){
 array2[x][n+i] = t_array[i];
 }
 }
 }
 }
/* IDCT on cols */
 for(n=0; n<W; n+=8) {
 for(m=0; m<H; m+=8){
 for(y=n; y<n+8; y++){
 for(x=m; x<m+8; x++){
 temp = 0.0;
 for(i=m; i<m+8; i++){
 if((i-m)==0) c1 = invsqrt2;
 if((i-m)>0) c1 = 1;
 temp += (float)(array2[i][y] * cosine[x-m][i-m] * c1/2);
 }
 array[x][y] = temp;
 }
 }
 }
 }
}

/* Rounds output image pixel values */
void write_image_out()
 {
 int i,j;
 int temp;

 for(i=0;i<IMAGE_LEN;i++)
 for(j=0;j<IMAGE_LEN;j++) {
 temp =(int)(ROUND(array[i][j]));
 if(temp<0) temp=0;
 if(temp>255) temp=255;
 image_out[IMAGE_LEN*i+j] = (unsigned char) temp;
 }
}

/* main */
void main()
{
 int i,j;

 TARGET_INITIALIZE(); /* Target initialization for RTDX */

 read_image();
 dct() ; /* DCT (1-d way) */
 quantization();
 dequantization();
 idct(); /* IDCT (1-d way) */
 write_image_out();

162 4. Applications

 RTDX_enableOutput(&ochan); /* Enable the output channel,"ochan" */

 for (i=0; i<IMAGE_SIZE; i+=MAX_ELEMENTS) {
 for (j=i; j<(i+MAX_ELEMENTS); j++) {
 message[j-i] = (unsigned char) imag ements) */ e_out[j]; /* write one row (256 el
 }
/* Send the data to the host */
 if (!RTDX_write(&ochan, message, sizeof(message))) {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
}
/* write a string to stdout */
 puts(" Completed Successfully!\n");
}

Program 17. The C code of the jpeg.c

 In the jpeg.c, the filesstdio.h, stdlib.h, math.h, rtdx.h , target.h, jpeg_main.h and
scenary.h are included. The rtdx.h contains the declarations of the functions related to the
RTDX technology. The target.h includes the declaration of function
TARGET_INITIALIZE(), which initializes the DSP and activates the interrupts so for the
RTDX technology to be enabled. The jpeg_main.h, which is presented in Program 18, and
contains declarations of some constants. The scenary.h contains the 256 x 256 image to be
processed.
 Before the declarations of the main() function, the RTDX channel “ochan” is defined
that will transfer the process result from DSP to GUI. The channel “ochan” transfers from
DSP an array of 256 numbers, that represents a line from the final image, to GUI.
 In addition, before the main() function, the read_image(), dct(), quantization(),
dequantization(), idct() and write_image_out() functions are described.
 In the main() function the DSP is initialized and the RTDX Technology is enabled. By
calling the read_image() function, the image is copied to a two-dimension. The direct DCT is
applied on the image by calling the dct() function. The quantization stage is achieved by
calling the quantization() function. In this point, the JPEG encoder has been completed. The
dequantization() function, realizes the dequantization. The JPEG decoder is completed by
calling the idct() function, with which the IDCT is applied on the image. The write_image()
function converts the data of the reconstructed image to integers between [0 255] and and
inputs them to the array image_out. The RTDX channel output “ochan” is enabled and the
image is being transferred from the DSP to GUI. This transfer of the final image is carried out
gradually meaning that each time only one line of the final image is written to the RTDX
channel.

The jpeg_main.h is presented in Program 18, and contains the declarations of some
useful constants such as IMAGE_LEN and BLOCK_LEN, with values of 256 and 8
respectively. Furthermore, the constants W and H, that correspond to the image’s dimensions,
as well as the constant invsqrt2, that equals to 21 , are declared. Finally the ROUND()
function is defined, which rounds a number to its nearest integer. This function is used for
rounding the values during the quantization stage.

LabVIEW to CCS Link 163

#ifndef JPEG_MAIN_H

#define IMAGE_LEN 256
#define IMAGE_SIZE (IMAGE_LEN*IMAGE_LEN)

#define W 256
#define H 256

#define BLOCK_LEN 8
#define BLOCK_SIZE (BLOCK_LEN*BLOCK_LEN)

#define invsqrt2 0.70710678

#define ROUND(a) (((a) < 0) ? (int) ((a) - 0.5) : \
 (int) ((a) + 0.5))

#endif

Program 18. The jpeg_main.h

 memory allocation is completed in rtdx_JPEG.cmd that is presented in Program 19.

The

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{
 VECS: org = 0h, len = 0x220
 IRAM: org = 0x00000220, len = 0x0000FE00 /*internal memory*/
 SDRAM: org = 0x80020000, len = 0x00fdffff /*external memory*/
 SDRAM0: org = 0x80000000, len = 0x00010000
 SDRAM1: org = 0x80010000, len = 0x00010000
 FLASH: org = 0x90000000, len = 0x00020000 *flash memory*/
}

SECTIONS
{
 .intvecs > 0h
 .text > SDRAM
 .rtdx_text > SDRAM
 .far > SDRAM
 .stack > SDRAM
 .bss > SDRAM
 .cinit > SDRAM
 .pinit > IRAM
 .cio > SDRAM
 .const > SDRAM

164 4. Applications

 .data > SDRAM
 .rtdx_data > SDRAM
 .switch > SDRAM
 .sysmem > SDRAM

 myvar0 > SDRAM0
 myvar1 > SDRAM1
 myvar2 > SDRAM
 myvar3 > SDRAM
 msg_var > SDRAM
}

 The View Wi d RTDX_JPEG.pjt, is presented in Figure
144, which implem ecoder RTDX_JPEG.pjt. Apart from the files
jpeg.c, and rtdx_JPEG.cmd it should also include the intvecs.asm
th optimization File (-ο3) is selected for the jpeg.c. In
addition, the libraries rtdx.lib (or rtdxsim.lib id a simulator is used) and rts6701.lib must also
be added to the project.

Program 19. The rtdx_JPEG.cmd

ndow of the CCS project, name
ents the JPEG encoder and d

 that were described above,
at is developed by TI. The local

Figure 148. The View Window of CCS for the RTDX_JPEG.pjt

LabVIEW to CCS Link 165

4.2.4 Histogram Equalization

 One of the most simple and effective technique for improving the quality of an image is
the histogram equalization. The purpose of this procedure is to generate an improved image,
the histogram of which will be uniformly. The histogram equalization has very good results
on images with low contrast, meaning that most luminance values are limited in a small range
between .

Histogram equalization on a grayscale image

 Analytically, the result of the histogram equalization process is to expand its luminance
distribution, in order to take the whole range between (as long as a grayscale image is
concerned) and not only a small part of it. In this case the image is visually.

The histogram equalization process, can be completed through these four steps:

(1) Histogram com age
(2) Accumulative histogram computation
(3) Calculation of new, normalized luminance values
(4) Transform the initial image to the final image

Histogram equalization on a grayscale image

 The simplest way of histogram equalization on a color image is to apply the histogram
equalization algorithm separately, on each one of the three R G and B components. It is
obvious that the image that will arise after the histogram equalization, in each component will
have more intense color , and consequently will be more pleasant to human. However, this
method is not supposed to be effective, because of its calculation complexity which is
increased with the size of the image, and because of the contrast growth that leads to color
contrast even in areas that has color homogeny.
 It is commonly known, that before a color image is processed, many times is converted
from the RGB space to another, such as HSI, YCbCr, LAB etc. These spaces have certain
advantages over the RGB space, and this is the reason why many algorithms that deal with
color pictures, suppose that the pictures are already converted to some other space. One of
these spaces that is widely used (mainly in image encoding, as the JPEG encoding) is the
YCbCr space. The advantage of the color representation of an image in this space is that the
greatest portion of information is included in the Y component, which is called luminance. On
the other hand, the Cb and Cr components are call chrominance, and they contain less
information, compared to Y component. Something like that, is not really happening in the
RGB space where each channel has the same i.
 W f the YCbCr space, where the greatest portion of information is
included in the Y component, the histogram equalization can be applied only on this
component and produce the same and even better results compared to RGB space. The
transformation from the RGB space to theYCbCr space, is giver from equation 3.

Cb
BGR

081.0419.0500.0

114.0587.0299

−−=
=

]2550[

]2550[

putation of original im

GR
Y

500.0331.0169.0
.0

+−−

ith the advantage o

++

BGRCr
B

=

 (3)

166 4. Applications

Respectively the inverse transformation, (RGBCYC rb →) is giver from equation 34:

CrYR

772.1
714.0344.0000.1
402.1000.1

+
−−

CbYB
CrCbYG =

000.1=

+=

 (4)

Histogram equalization implementation on a color image in RGB space

 Below the histeq_RGB_rtdx.c that implements the histogram equalization of a color
image in the RGB space, is presented.

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <rtdx.h> /* RTDX_Data_Read */
#include <stdio.h> /* printf */
#include "target.h" /* TARGET_INITIALIZE */

#define IMAGE_SIZE 65536
#define H 256
#define W 256

#include "red.h" /* R_1d[IMAGE_SIZE] data */
#include "green.h" /* G_1d[IMAGE_SIZE] data */
#include "blue.h" /* B_1d[IMAGE_SIZE] data */

#pragma DATA_SECTION (R_1d,"R1_var")
#pragma DATA_SECTION (G_1d,"G1_var")
#pragma DATA_SECTION (B_1d,"B1_var")

#pragma DATA_SECTION (R,"R_var")
int R[IMAGE_SIZE];

#pragma DATA_SECTION (RGB_out,"RGB_out_var")
unsigned char RGB_out[3*IMAGE_SIZE];

#pragma DATA_SECTION (im_1d,"im_var")
unsigned char im_1d[IMAGE_SIZE];

#pragma DATA_SECTION (message, "msg_var")

RTDX_CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX_MESSAGES 758
#define MAX_ELEMENTS 256

unsigned char message[MAX_ELEMENTS]; /* 256 pixels each message */

int ch_count;

/* Histogram Equalization. */

LabVIEW to CCS Link 167

void hist_equalization()
{
 int i;
 int hist[256];
 int sum_hist[256];
 int sum;

/* Clear hist[256] & sum_hist[256] */

 for (i=0; i<256; i++) {
 hist[i] = 0;
 sum_hist[i] = 0;
 }

 /* Calculate image histogram */

 for(i=0; i<IMAGE_SIZE; i++) {
 hist[(int) im_1d[i]]++;
 }

 /* Calculate normalized sum of hist */

 sum = 0;

 for(i=0; i<256; i++) {
 sum = sum + hist[i];
 sum_hist[i] = sum * 255 ;
 }

 for(i=0; i<256; i++) {
 sum_hist[i] = sum_hist[i] >> 16;
 }

 /* Transform Image using sum_hist as a LUT */

 for(i=0; i<IMAGE_SIZE; i++) {
 R[i]= sum_hist[(unsigned char)im_1d[i]];
 }
}

/* Writes output image */
void write_image()
{
 int i;

 for (i=0; i<IMAGE_SIZE; i++) {
 if (R[i]<0) R[i]=0;
 if (R[i]>255) R[i]=255;
 RGB_out[i + ch_count*IMAGE_SIZE] = (unsigned char) R[i];
 }
}

/* main program */

void main ()

168 4. Applications

{
 int i, j;
 ch_count=0;

/* Equalize RED channel */

 for (i=0; i<IMAGE_SIZE; i++) { im_1d[i] = R_1d[i]; }

 hist_equalization();
 ch_count=0;
 puts("\n histeq RED ok!");
 write_image();

/* Equalize GREEN channel */

 for (i=0; i<IMAGE_SIZE; i++) { im_1d[i] = G_1d[i]; }

 hist_equalization();
 ch_count=1;
 puts("\n histeq GREEN ok!");
 write_image();

/* Equalize BLUE channel */

 for (i=0; i<IMAGE_SIZE; i++) { im_1d[i] = B_1d[i]; }

 hist_equalization();
 ch_count=2;
 puts("\n histeq BLUE ok!");
 write_image();

/* Send RED GREEN BLUE data */

 TARGET_INITIALIZE(); /* Target initialization for RTDX */

 RTDX_enableOutput(&ochan);

 for (i=0; i<(3*IMAGE_SIZE); i+=MAX_ELEMENTS) {
 for (j=i; j<(i+MAX_ELEMENTS); j++) {

 message[j-i] = (unsigned char) RGB_out[j];
 }
/* Send the data to the host */

 if (!RTDX_write(&ochan, message, sizeof(message))) {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
 }

 puts("\nProgram Completed!");
}

Program 20. The C code of the histeq_RGB_rtdx.c

LabVIEW to CCS Link 169

 In the C code of the histeq_RGB_rtdx.c that is presented in Program 20, the files
stdlib.h, string.h, math.h, rtdx.h, stdio.h, target.h, red.h, green.h and blue.h, are included. The
file rtdx.h contains the declarations of the functions related to the RTDX technology. The file
target.h includes the declaration of function TARGET_INITIALIZE(), which initializes the
DSP and activates the interrupts so for the RTDX technology to be enabled. The header files
red.h green.h and blue.h contain the R, G and B component of the color image that the
histogram equalization will be applied on. The image to be processed has 256 x 256 pixels.
 Before the declaration of the main() function the RTDC channel “ochan” is defined, that
will transfer the process result from DSP to GUI. The channel “ochan” transfers from DSP an
array of 256 numbers, that represents a line from the final image, to GUI.
 In addition, before the main() function the hist_equalization() and write_image()
functions are defined.
 In the main() function the DSP is initialized and the RTDX Technology is enabled. For
each component the functions hist_equalization() and write_image() are called. By calling the
hist_equalization() function the histogram equalization is applied on each component. By
calling the write_image() the content of each equalized component is converted into integers
between [0 255] and they are placed into the 1D-array RGBout. When the equalization
process of all three components has been completed successfully the array RGBout with
256x256x3 = 196608 elements contains all three components of the equalized image. The first
65536 elements correspond to R component, the next 65536 to G component and the last
65536 elements to B component. Afterwards, the RTDX channel output “ochan” is enabled
and the image is transferred from DSP to GUI. This transfer of the final image is carried out
gradually meaning that each time only one line of the final image is written to the RTDX
channel.
 The next necessary project file is rtdx_histeqRGB.cmd and is presented in Program 21.
In this file, three memory areas of the DSK are defined, in which a name is given (i.e.
BMEM), while in the SECTIONS field every variable that is declared in the C code is
connected with the #pragma directive in one of these areas.

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{
 VECS: o=00000000h l=00000200h /* interrupt vectors */
 PMEM: o=00000200h l=0000FE00h /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000h /* CE0, SDRAM, 16 MBytes */

}

SECTIONS
{
 .intvecs > 0h
 .text > BMEM
 .rtdx_text > BMEM

170 4. Applications

 .far > BMEM
 .stack > BMEM
 .bss > BMEM
 .cinit > BMEM
 .pinit > PMEM
 .cio > BMEM
 .const > BMEM
 .data > BMEM
 .rtdx_data > BMEM
 .switch > BMEM
 .sysmem > BMEM

 msg_var > BMEM
 im_var > BMEM
 R1_var > BMEM
 G1_var > BMEM
 B1_var > BMEM
 R_var > BMEM
 RGB_out_var > BMEM
}

 In Figure 149, the View W e CCS project RTDX_histeqRGB.pjt, is
presented. This project implem age in the RGB space.
Apart from the files that were described above,
the intvecs.asm, that was developed histeq_RGB_rtdx.c
the local optimization File (- ct the libraries rtdx.lib (or
rtdxsim.lib if a simulator is used) and rts6701.lib should be added as well.

Program 21. The rtdx_histeqRGB.cmd

indow of th
ents the histograms equalization of an im

histeq_RGB_rtdx.c, and rtdx_histeqRGB.cmd
 by TI, must also be added. For the

ο3) is selected. In addition in the proje

Figure 149. The View Window of CCS for the RTDX_histeqRGB.pjt

LabVIEW to CCS Link 171

Histogram equalization implementation on a color image in YCbCr space

 The C code of the histeq_Y_rtdx.c that implements the histpgram equalization of a color
image in the YCbCr space, is presented below.

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <rtdx.h> /* RTDX_Data_Read */
#include <stdio.h> /* printf */
#include "target.h" /* TARGET_INITIALIZE.*/

#define IMAGE_SIZE 65536
#define H 256
#define W 256

#include "red.h" /* R_1d[IMAGE_SIZE] data */
#include "green.h" /* G_1d[IMAGE_SIZE] data */
#include "blue.h" /* B_1d[IMAGE_SIZE] data */

#pragma DATA_SECTION (R_1d,"R1_var")
#pragma DATA_SECTION (G_1d,"G1_var")
#pragma DATA_SECTION (B_1d,"B1_var")
#pragma DATA_SECTION (Y, "Y_var")
#pragma DATA_SECTION (Cb,"Cb_var")
#pragma DATA_SECTION (Cr,"Cr_var")
#pragma DATA_SECTION (R, "R_var")
#pragma DATA_SECTION (G, "G_var")
#pragma DATA_SECTION (B, "B_var")
#pragma DATA_SECTION (RGB_out,"RGB_var")

unsigned char RGB_out[3*IMAGE_SIZE];
int Y[IMAGE_SIZE];
int Cb[IMAGE_SIZE];
int Cr[IMAGE_SIZE];
int R[IMAGE_SIZE];
int G[IMAGE_SIZE];
int B[IMAGE_SIZE];

#pragma DATA_SECTION (message, "msg_var")

RTDX_CreateOutputChannel(ochan); /* Channel to use to write data */

#define MAX_MESSAGES 256
#define MAX_ELEMENTS 256

unsigned char message[MAX_ELEMENTS]; /* 256 pixels each message */

/* RGB to YCbCr color conversion */
void RGB_to_YCbCr()
{
 int i;

172 4. Applications

 for(i=0; i<IMAGE_SIZE; i++) {

 /* weights ->(weights *1000) */
 Y[i] = 299*R_1d[i] + 587*G_1d[i] + 114*B_1d[i];
 Cb[i] = -169*R_1d[i] - 331*G_1d[i] + 500*B_1d[i];
 Cr[i] = 500*R_1d[i] - 419*G_1d[i] - 81*B_1d[i];
 }

 /* devide with 1024=2^10 */
 for(i=0; i<IMAGE_SIZE; i++) {
 Y[i] = (int) (Y[i]/1000);
 Cb[i] = (int) (Cb[i]/1000);
 Cr[i] = (int) (Cr[i]/1000);
 }
}

/* Histogram Equalization. */
void hist_equalization()
{
 int i;
 int hist[256];
 int sum_hist[256];
 int sum;

/* Clear hist[256] & sum_hist[256] */

 for (i=0; i<256; i++) {
 hist[i] = 0;
 sum_hist[i] = 0;
 }

/* Calculate image histogram */

 for(i=0; i<IMAGE_SIZE; i++) {
 hist[(int) Y[i]]++;
 }

/* Calculate normalized sum of hist */

 sum = 0;

 for(i=0; i<256; i++) {
 sum = sum + hist[i];
 sum_hist[i] = sum * 255 ;
 }

 for(i=0; i<256; i++) {
 sum_hist[i] = sum_hist[i] >> 16;
 }

/* Transform Image using sum_hist as a LUT */

 for(i=0; i<IMAGE_SIZE; i++) {
 Y[i]= sum_hist[(unsigned char)Y[i]];

LabVIEW to CCS Link 173

 }
}

/* YCbCr to RGB color conversion */
void YCbCr_to_RGB()
{
 int i;

 for(i=0; i<IMAGE_SIZE; i++) {

 R[i] = 10000*Y[i] - 9*Cb[i] + 14017*Cr[i];
 G[i] = 10000*Y[i] - 3437*Cb[i] - 7142*Cr[i];
 B[i] = 10000*Y[i] + 17722*Cb[i] + 10*Cr[i];
 }

 for(i=0; i<IMAGE_SIZE; i++) {
 R[i] = (int) (R[i]/10000);
 G[i] = (int) (G[i]/10000);
 B[i] = (int) (B[i]/10000);
 }
}

/* Writes output image */
void write_image()
{
 int i;

 for (i=0; i<IMAGE_SIZE; i++) {
 if (R[i]<0) R[i]=0;
 if (G[i]<0) G[i]=0;
 if (B[i]<0) B[i]=0;
 if (R[i]>255) R[i]=255;
 if (G[i]>255) G[i]=255;
 if (B[i]>255) B[i]=255;

 RGB_out[i] = (unsigned char) R[i];
 RGB_out[i+IMAGE_SIZE] = (unsigned char) G[i];
 RGB_out[i+2*IMAGE_SIZE] = (unsigned char) B[i];
 }
}

/* main program */
void main ()
{
 int i, j;

 RGB_to_YCbCr();
 hist_equalization();

 puts("\n Equalization ok!");

 YCbCr_to_RGB();
 write_image();

174 4. Applications

/* Send RED GREEN BLUE data */

 TARGET_INITIALIZE(); /* Target initialization for RTDX */

 RTDX_enableOutput(&ochan);

 for (i=0; i<(3*IMAGE_SIZE); i+=MAX_ELEMENTS) {
 for (j=i; j<(i+MAX_ELEMENTS); j++) {
 message[j-i] = (unsigned char) RGB_out[j];
 }

/* Send the data to the host */
 if (!RTDX_write(&ochan, message, sizeof(message))) {
 fprintf(stderr, "\nError: RTDX_write() failed!\n");
 abort();
 }
 }

 puts("\nProgram Completed!");
}

Program 22. The C code of the histeq_Y_rtdx.c

 In the C code of the histeq_Υ_rtdx.c that is resented in Program 22, the files stdlib.h,
string.h, math.h, rtdx.h, stdio.h, target.h, red.h, green.h and blue.h are included. The rtdx.h
contains the declarations of the functions related to the RTDX technology. The header file
target.h includes the declaration of function TARGET_INITIALIZE(), which initializes the
DSP and activates the interrupts so for the RTDX technology to be enabled. The header files
red.h green.h and blue.h contain the R, G and B component of the color image that the
histogram equalization will be applied on. The image to be processed has 256 x 256 pixels.
 Before the declaration of the main() function the RTDC channel “ochan” is defined, that
will transfer the process result from DSP to GUI. Τhe channel “ochan” transfers from DSP an
array of 256 numbers, that represents a line from the final image, to GUI.
 In addition, before the main() the functions RGB_to_YCbCR(), hist_equalization(),
YCbCr_to_RGB() and write_image() are described.
 In the main() function, the image is convertred from the RGB to the YCbCr space using
the function RGB_to_YCbCR(). With the hist_equalization() function the equalization of the
Y component (luminance) is achieved. Then, by calling YCbCr_to_RGB() function the
equalized image is coverted to the RGB space. By calling the write_image() the content of
each equalized component is converted into integers between [0 255] and they are placed into
the 1D-array RGBout. When the equalization process of all three components has been
completed successfully the array RGBout with 256x256x3 = 196608 elements contains all
three components of the equalized image. The first 65536 elements correspond to R
component, the next 65536 to G component and the last 65536 elements to B component.
Afterwards, the RTDX channel output “ochan” is enabled and the image is transferred from
DSP to GUI. This transfer of the final image is carried out gradually meaning that each time
only one line of the final image is written to the RTDX channel.
The next necessary project file is rtdx_histeqΥ.cmd and is presented in Program 21. In this
file, three memory areas of the DSK are defined, in which a name is given (f.e. BMEM),
while in the SECTIONS field every variable that is declared in the C code is connected with
the #pragma directive in one of these areas.

LabVIEW to CCS Link 175

-c
-heap 0x1000
-stack 0x1000
-u __vectors
-u _auto_init

_HWI_Cache_Control = 0;
_RTDX_interrupt_mask = ~0x000001808;

MEMORY
{
 VECS: o=00000000h l=00000200h /* interrupt vectors */
 PMEM: o=00000200h l=0000FE00h /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000h /* CE0, SDRAM, 16 MBytes */
}

SECTIONS
{
 .intvecs > 0h
 .text > BMEM
 .rtdx_text > BMEM
 .far > BMEM
 .stack > BMEM
 .bss > BMEM
 .cinit > BMEM
 .pinit > PMEM
 .cio > BMEM
 .const > BMEM
 .data > BMEM
 .rtdx_data > BMEM
 .switch > BMEM
 .sysmem > BMEM
 msg_var > BMEM
 im_var > BMEM
 R1_var > BMEM
 G1_var > BMEM
 B1_var > BMEM
 Y_var > BMEM
 Cb_var > BMEM
 Cr_var > BMEM
 R_var > BMEM
 G_var > BMEM
 B_var > BMEM
 RGB_var > BMEM
}

Program 22. The rtdx_histeqY.cmd

 In Figure 150, the View Window of the CCS project RTDX_histeqY is presented. This
project implements the histograms equalization of an image in the YCbCr space. Apart from
the files histeq_Y_rtdx.c, and rtdx_histeqY.cmd that were described above, the intvecs.asm,
which was developed by TI, must also be added. For the histeq_Y_rtdx.c the local

176 4. Applications

optimization File (-ο3) is selected. In addition in the project the libraries rtdx.lib (or
rtdxsim.lib if a simulator is used) and rts6701.lib should be added as well.

Figure 150. The View Window of CCS for RTDX_histeqY.pjt

4.2.5 Implementing the VI to control the application

 The VI that will be presented below is ImageGUI.v. It controls and communicate with
CCS and consequently the DSP of DSKC6713. ageGUI.vi the user can choose the
image that will be load rithm that will be applied
on this image. This VI shows the selected

The ImageGUI.vi front panel

 The front panel of the Im presented in Figure 151 provides to indicators
named “Image_in” and Im e loaded and processed to
DSP and the processing resu Type” provides two radio buttons,

age
that will be loaded to DSP. ”, that has the sates shown
in Table 13, the user can Table 13 shows, some states of
the control “Algorithm Selecti and some others to grayscale
images. Therefore, the states of espond to the value of the control
“Image Type” are disabl er’s convenience. In
front panel of Figure 151 the active states of lgorithm Selection” are shown,
when from the control “Ima age to be used is actually a
grayscale image.

With Im
ed to the DSP as well as the processing algo

 image before and after the processing.

ageGui.vi that is
age_Out” that represent te image to b

lt image. The control “Image
the “Grayscale” and the “Color (RGB)” with which the user can define the type of the im

With the control “Algorithm Selection
select the image to be processed. As

on” correspond to color images
this control that do not corr

ed and presented with a light grey color for us
the control “A

ge Type” has been selected that the im

LabVIEW to CCS Link 177

Value State Description
0 Algorithm Selection Nothing happen
1 Sobel Edge Detection (Gray) The edges of a grayscale image are detected .

2 pace is Histogram Equalization RGB (Color) The histogram of a color image in the RGB s
equalized.

3 pace is Histogram Equalization Y (Color) The histogram of a color image in the YCbCr s
equalized.

4 DCT/IDCT slow (Gray) The direct DCT and the IDCT is applied on a grayscale
image by using the 1D-DCT .

5 DCT/IDCT fast (Gray) The direct DCT and the IDCT is applied on a grayscale
image by using the McGovern algorithm.

6 ording to JPEG encoder/decoder (Gray) A grayscale image is encoded and decoded acc
the JPEG standard.

Table 13. The states of the control input “Algorithm Selection”

Figure 151. The front panel of ImageCUI.vi

 When the control “Algorithm Selection” is in the state of Algorithm Selection, then the
VI is in standby mode. If in this moment the user desires to terminate its function, the “Stop”
button will be pressed. I any state of the control “Algorithm Selection” is selected except for
the Algorithm Selection then the VI will exit the standby mode and a dialog window will
appear automatically, being the Windows explorer, asking to select and load the desired
image. After that the image will appear in the indicator “Image in”. When the DSP
successfully completes the process define by the control “Algorithm Selection” the final,
processed image will appear in the “Image Out”.

The block diagram panel of the ImageGUI.vi

 In Figure 152, the block diagram of ImageGUI.vi is shown, which consists of six phases
that will be described thoroughly below, so the function of this VI to be understood.

178 4. Applications

Figure 152. The block diagram of ImageGUI.vi

 The first phase of the block diagram is shown in Figure 153 and it implements the
standby mode of the VI, since it runs constantly till the button “Stop” is pushed or the state of
the control “Algorithm Selection” is changed. Firstly the Not Equal To 0?.vi is selected if the
value of the control “Algorithm Selection” is different than 0 (which means that the state
Algorithm Selection is not selected). If the output of the Not Equal To 0?.vi is False then the
value of the control “Algorithm Selection” is 0. The “Stop” button and the output of Not
Equal To 0?.vi are connected as inputs on the Compound Arithmetic.vi (that is defined to
execute the OR operation). Therefore, the output of Compound Arithmetic.vi that is
connected to the control input of the While structure, terminates the execution of the first
phase of the block diagram when the “Stop” button is pushed or the value of the control
“Algorithm Selection” is changed (different than 0).

(a) (b)

Figure 153. The first phase of the block diagram of ImageGUI.vi

(a) for a color image (b) foe a grayscale image

 In the first phase of the block diagram, the states of the control “Algorithm Selection”
that are not correspond to the value of the control “Image Type”, are disabled. The
deactivation of the control “Algorithm Selection” states is achieved with the DisabledItems[]
property. This property takes as input an array that shows the values of the states to be
disabled. Through the Case structure the input of the DisabledItems[] property is altered
according to the value of the control “Image Type” that is connected to the control input of
the Case structure. Therefore, when a color image is selected by the control “Image Type”, the
states of the control “Algorithm Selection” with values 1, 4, 5 and 6, will be disabled. In the

LabVIEW to CCS Link 179

same way when the user s of the control “Algorithm
Selection” with values 2,
 of a Case structure that is controlled by
the “Stop” button. The Tr pty, since when the “Stop” button is
pushed all other phases are bypassed and the inated.
 pleted, in which the
path of the CCS project to be lo the reading process, the data
collection and the representati e user, through the respective
dialog window, are realized.

elects a grayscale image, the states
and 3, will be disabled.

The phases 2, 3, 4, 5, and 6 are the False “case”
ue “case” of this structure is em

function of the VI is term
In Figure 154, the second phase of the ImageGUI.vi has been com

aded, is defined. In this phase
on of the image selected by th

Figure 154. The second phase of the block diagram of ImageGeUI.vi

 The ImageGUI.vi should be saved in the directory that contains the folders with the
CCS projects’ files that execute the respective process on the image. The output of the Current
VI’s Path that indicates the path where the VI is saved, is connected to the input of Strip
Path.vi that cuts off the last part of the path. If the path of the VI is C:\dsp_projects\
image_projects\ImageGUI.vi then the output of the Strip Path.vi is C:\dsp_projects\
image_projects. The output of Strip Path.vi is connected to input “base path” of Build Path.vi
while in input “ name or relative path” the output of Case structure. The Case structure alters
the input “ name or relative path” of Build Path.vi according to the CCS project that has to be
loaded according to the state of the control “Algorithm Selection. The cases of the Case
structure are presented in Figure 155. Therefore, if the state of the control “Algorithm
Selection” is Sobel Edge Detection (Gray) then the input “ name or relative path” of the Build
Path.vi will take the RTDX_Sobel_edges\ RTDX_Sobel_edges.pjt.so the output of the Build
Path will be the CCS project path for the edge detection. In this way the path of the CCS
project that will implement the processing algorithm indicated by the control “Algorithm
Selection”, is created

180 4. Applications

Figure 155. The cases of the Case structure ijn the second phase of the block diagram of ImageGUI.vi

 In the second phase of the ImageGUI.vi the Read BMP and get data.vi is executed. It
reads a BMP image, shows it and collects its data in order to create three 1-D arrays that will
represent the three components of a color image. In the case of a grayscale image then the
three arrays that will be created by the Read BMP and get data.vi will contain the luminance
values of this specific image. At the ImageGUI.vi, in input “Original Image” of the Read
BMP and get data.vi a reference to the control “Image in” is connected while in input “Image
Type” the control “Image Type” is connected. In outputs “Image Data 1”, “Image Data 2” and
Image Data 3” contain the data of the read image. In output “Original Image 2” the indicator
“Image in” is connected in order to represent the image just read. The output “cancelled”
indicates that whether the “Cancel” button is pushed in the dialog window that pops up for the
image selection.
 In Figure 156 the block diagram of the Read BMP and get data.vi, is shown where the
input “Path” is checked foe being empty or not containing any paths. If it is empty, like the
case where the Read BMP and get data.vi is called by the ImageGUI.vi, the True case of the
structure “Case Structure 1” will be executed. In this point the File Dialog.vi is executed that
will show the dialog window for the image selection. The output “path” of File Dialog.vi will
include the path of the chosen image. The output “cancelled” indicates that whether the
“Cancel” button is pushed in the dialog window that pops up for the image selection and is
connected to the output “cancelled” of the Read BMP and get data.vi and with the control
case of the structure “Case Structure 2”. If in the dialog window the “Cancel” button is
pushed by the user then the True case of the structure “Case Structure 2” will be selected ,
which is empty and the function of the Read BMP and get data.vi will be terminated. In the
False case of the structure “Case Structure 2” the output “path” of File Dialog.vi will be
connected to the input “Path to BMP File” of Read BMP File.vi which is going to read the
BMP image. The output cluster “Image data” of the Read BMP File.vi is connected to the
corresponding input of the Draw Flattened Pixmap.vi. The Draw Flattened Pixmap.vi will
represent the image through the indicator “Original Image 2”.
 In the control case of the structure “Case Structure 3” the input “Image Type” is
connected. Therefore, the case “Color(RGB)” of the structure “Case Structure 3” is executed
when a color image is used. In this point, the output “image” of the output cluster “Image
data” of the Read BMP File.vi is an array with 196608 elements (256x256x3 = 196608 for a
256x256 image) and contains the values f the R, G and B components of the image. In this
array, the first three elements correspond to the R, G and B components of the first pixel, the

LabVIEW to CCS Link 181

next three elements correspond to the three components of the second pixel etc. In the case of
“Color(RGB)” of the structure “Case Structure 3” the separation of the three components of
the image must be done. For this, a For loop is used that is repeated 65536 times (for a 256 x
256 image) and takes as input the output “image” of the output cluster “Image data” in the
Read BMP File.vi. With the help of the Index.vi and the pattern presented in the block
diagram of the Read BMP and get data.vi this separation of the three image components is
achieved. The R, G and B components after the separation will be three 1-D arrays consisting
of 65536 elements (for a 256x256 image) that are included in the outputs “Image Data 1”,
“Image Data 2” and “Image Data 3”.

Figure 156. The block diagram of the Read BMP and get data.vi

 In case where a grayscale image is used, the case “Grayscale” of the structure “Case
Structure 3” is executed in which the output “image” of the output cluster “Image data” of the
Read BMP File.vi, which is an array with 65536 elements (256x256 = 65536 for a 256x256
image) andcontains the luminance value of each image pixel, is connected to the outputs
“Image Data 1”, “Image Data 2” and “Image Data 3” of Read BMP and get data.vi.
 The input “Original Image” of the Read BMP and get data.vi that contains reference to
the indicator “Image in” defines the element, which the “DrawAreaSize” property is
addressed to. The “DrawAreaSize” property addresses only to images controls and indicators
and modifies their size according to the value of the cluster connected o this property. In this
specific case, the outputs “Rectangle.right” and “Rectangle.left” are grouped (with the
Bundle.vi) and connect to the “DrawAreaSize” property. In this way is assured that the image
indicator (specifically the control “Image in”) will be of the same size as the image that will
represent.
 The second phase of the block diagram of ImageGUI.vi is completed with the indicator
“Image Out” to be cleared. This is achieved by connecting the constant “Empty Picture” to the
local variable of the indicator “Image Out”.
 The phases 3, 4, 5, and 6 comprise the False case of a Case structure that I scontrolled
by the output “cancelled” of the Read BMP and get data.vi. In the True case of this structure
that is executed only when the “Cancel” button, in the dialog window for the image selection
is pressed, the reset of the control “Algorithm Selection” to the state Algorithm Selection is

182 4. Applications

carried out. The reset of the control “Algorithm Selection” is achieved by connection the
constant “Algorithm Selection” to the local variable of this specific control.
 As long as the “Cancel” button, in the dialog window for the image selection, is not
pressed and the second phase of the block diagram of ImageGUI.vi is completed, the False
case of the above structure that includes the phases 3, 4, 5 and 6, will be executed.
 In the third phase of the block diagram of ImageGUI.vi that is presented in Figure 157,
the reset of the control “Algorithm Selection” to the state Algorithm Selection is carried out
and the creation of three header files (Red.h, Green.h and Blue.h) that contain the three
components of a color image or the creation of a single header file (scenary.h) that contain the
luminance values of a grayscale image according to the value of control “Image Type” is
taking place.

(a) (b)

Figure 157. The third phase of the block diagram of ImageGUI.vi
(a) for a color image (b) for a grayscale image

 The reset of the control “Algorithm Selection” is achieved by connecting the constant
“Algorithm Selection” to the local variable of this specific control.
 When he use of a color image is selected, then the case “Color(RGB) of the Case
structure in the third phase of the block diagram, is executed. In this case three header files
must be created the Red.h, Green.h and Blue.h, which they contain the three arrays R_1d,
G_1d and B_1d respectively. These are unsigned short arrays and they include the
components R, G and B of the image. These files should be created in order to load the image
to be processed on the DSP during the building process of the respective CCS project. The
files Red.h, Green.h and Blue.h must be saved in the same directory as the respective project.
 The path where the header files Red.h, Green.h and Blue.h will be saved is defined by
the CCS project path in the first phase. The path of the CCS project acts as an input to the
Strip Path.vi and the last part of it (name of the project) is cut off. The output of Strip Path.vi
is connected to the input “base path” of the Build Path.vi while to the input “name or relative
path” the string constant is connected, which contains the name of the file to be created. In
this way the path of the Red.h, Green.h and Blue.h is defined. The Write data to file.vi, that
creates and saves these files, takes as input the path where the respective file is saved, the
name of the array that will contain this file and array’s data. In order to create the header file
Red.h, to input “File Path” of Write to data file.vi the output of Build Path.vi that creates the
path of this file, is connected. To input “Array Name” of Write to data file.vi the string

LabVIEW to CCS Link 183

constant, that contains the name of the array such as R_1d, is connected, while the input
“Data” is connected to output “Image Data 1” of the Read BMP and get data.vi, which was
described in the second phase, and contains the R component of the image. Th esam eprocess
is followed for the creation of the Green.h and Blue.h header files.
 When the use of a grayscale image is selected, then the case “Grayscale” of the Case
structure is executed. In this case, following the process that creates the Red.h, the heder file
scenary.h is created, which contains the array image_in. This is a unsigned short array and
contains the value of luminance for each pixel of the image. This file must be created in order
to load the image to be processed on the DSP during the building process of the respective
CCS project. The file scenary.h is saved in the same directory as the respective project.

Figure 158. The block diagram of Write data to file.vi

 The Write data to file.vi is used to create the Red.h, Green.h, Blue.h and scenary.h , the
block diagram of which is presented in Figure 158. The input “File Path” contains the path
and the name of the file to be created. In the folder where the project is, a file with name like
the one indicated by the input “File Path” may already exist, so this is why the input “File
Path” is connected to Delete.vi in order to delete this file. The output “dup path” of Delete.vi
contains exactly the same path and name of the file indicated by the input “File Path” and is
connected to input “file path” of Write Characters to File.vi in order to create a new file in the
same path with the same name. The input “Data” contains the image data that will be saved to
the new file. The input “Data” is connected to input “array” of the Array To Spreadsheet
String.vi in order for the array to be converted to a string, where an element will be separated
by the other with a comma “,”. The input “Array Name” contains the name of the array that
will be declared to the file that is created by the Write data to file.vi. The content of this file
is a string generated by the Concatenate Strings.vi that takes as inputs three string constants,
the input “Array Name” and the output of Array To Spreadsheet String.vi. If the input “Array
Name” contains the name R_1d and the input “Data” contains the elements 1, 2, 3, and 4
then the output of Concatenate Strings.vi will be :

unsigned char R_1d[IMAGE_SIZE] = {
1 , 2 , 3 , 4
};

The output of Concatenate Strings.vi is connected to the input “character string” of Write
Characters to File.vi in order for the data to be written to the new file indicated by the input
“File Path” of Write data to file.vi.
 The third phase of block diagram of ImageGUI.vi is completed with the presentation
and description of the function of Write data to file.vi .

184 4. Applications

 In the fourth phase of the block diagram of ImageGUI.vi that is presented in Figure 159,
CCS is setting up to use the DSKC6713 and to be controlled in order to initiate the image
processing. This phase is completed when the DSP finishes the process of the image.

Figure 159. The forth phase of the block diagram of ImageGUI.vi
 The CCS_ Setup_Open.vi loads the CCStudio Setup.The CCS_Setup_ Clear.vi all
previous setting of the CCStudio Setup. The CCS_Setup_Add_ Board.vi loads to CCStudio
Setup the DSKC6713 drivers according to the path indicated by the constant “Path”, since it is
connected to the input “Driver Path” of subVI. The CCS_Setup_Save.vi saves all selected
settings and the CCS_ Setup_Close.vi closes the CCStudio Setup.vi. In this point the CCS has
been set for the use of the DSKC6713.
 The CCS_Open.vi loads the CCS and the CCS_Open_Project.vi load the CCS project
according to the path indicated by the input “Project Path In”. The path that the input “Project
Path In” of the CCS_Open_Project.vi contains, was defined in the second phase of the block
diagram of ImageGUI.vi and converted to a string by using the Path To String.vi. The
CCS_Build.vi commands the CCS to build the loaded project in order to generate the
executable fle. When the building process is completed, the CCS_Build_Result.vi outputs the
building result to the indicator “Build Result”. The CCS_Connect.vi commands the CCS to
connect to the DSKC6713, while the CCS_DSP_Reset.vi resets the board. As long as no
errors have occurred during the building process the CCS_Download.vi commands the CCS
to download the executable to the DSP that also contains the mage to be processed. The
project uses the RTDX technology, so the CCS_RTDX_Enable.vi is used that sets the RTDX
parameters and enables the RTDX technology. In this specific case, the default settings of the
RTDX technology are used. The CCS_Run.vi, commands the DSP to initiate the execution of
the program. Inside the While structure the Is_DSP_Running.vi has been placed that controls
if the DSP is executing the program. The output “Running” of Is_DSP_Running.vi take the
False value when the DSP stops the execution of the program which means that the process is
complete. By using the Wait.vi that is connected to an arithmetic constant 200, the execution
of the While structure every 200 msec, is achieved. The While structure stops to execute when
the output “Running” of Is_DSP_Running.vi takes the False value. This is when the furth
phase of the block diagram of ImageGUI.vi is completed.
 In the fifth phase of the block diagram of ImageGUI.vi the image is being read, which is
the DSP process result, through the RTDX channel “ochan”. The fifth phase is actually
consisting of a Case structure that is controlled by the control “Image Type”.
 When the use of a color image is selected the case Color(RGB) of the Case structure is
executed, that is presented in Figure 160.

LabVIEW to CCS Link 185

Figure 160. The fifth phase of the block diagram of ImageGUI.vi for a color image

 The transfer of a color image is executed by gradually writing data to the respective
RTDX channel. In fact, an array with 256 elements is written each time to the RTDX channel,
so in order to complete the transfer of a color image the DSP has made 256 x 3 = 768 writes.
Therefore, the RTDX channel contains 768 messages when the process of a color image is
completed. In order to retrieve this color image 768 readings has to be made from the RTDX
channel “ochan”. This is achieved with a For loop that contains the RTDX_Read.vi, in which
the RTDX_Read_SA_UI1 is selected because the content of the RTDX channel is arrays with
1-byte unsigned integers. To the input “Channel” of RTDX_Read.vi a string constant is
connected that contains the name of the RTDX channel from which the reading of the image
is going to be made. The output of the For loop is a 768x256 array that with the Reshape
Array.vi is converted to an 1-D array with 768x256=196608 elements. The first 65536
elements of the array comprise the R component of the image, the next 65536 elements
comprise the G component and the final 65536 elements the B component. The separation of
the image’s components is achieved by the use of the Array Subset.vi and with the pattern
described in Figure 160. The outputs of the Array Subset.vi is the outputs of the Case
structure as well and contain the components of the image retreived.
 When the use of a grayscale image is selecte, the case Grayscale of Case structure is
executed, that is presented in Figure 161.

Figure 161. The fifth phase of the ImageGUI.vi block diagram for a grayscale image

186 4. Applications

 The transfer of a color image is executed by gradually writing data to the respective
RTDX channel. In fact, an array with 256 elements is written each time to the RTDX channel,
so in order to complete the transfer of a color image the DSP has made 256 x 3 = 768 writes.
Therefore, the RTDX channel contains 768 messages when the process of a color image is
completed. In order to retrieve this color image 768 readings has to be made from the RTDX
channel “ochan”. This is achieved with a For loop that contains the RTDX_Read.vi, in which
the RTDX_Read_SA_UI1 is selected because the content of the RTDX channel is arrays with
1-byte unsigned integers. To the input “Channel” of RTDX_Read.vi a string constant is
connected that contains the name of the RTDX channel from which the reading of the image
is going to be made. The output of the For loop is a 768x256 array that with the Reshape
Array.vi is converted to an 1-D array with 768x256=196608 elements that contain the
luminance value of each pixel in the retrieved image. The outputs of the Array Subset.vi is
connected to the three data outputs of the Case structure. In this point the fifth phase of the
block diagram of ImageGUI.vi is completed.
 In the sixth phase of the block diagram of ImageGUI.vi that is presented in Figure 162 ,
the termination of the CCS and the representation of the retrieved image is realized.

Figure 162. The sixth phase of the block diagram of ImageGUI.vi

 The CCS_DSP_Halt.vi commands the DSP through CCS to stop the termination of the
program. The use of CCS_DSP_Halt.vi in this specific case is since if no error has occurred
or if no relative command has been given manually, the DSP will have already terminate the
program’s execution. The CCS_RTDX_Disable.vi disables the RTDX technology. The
CCS_Close_Project.vi closes the project, opened by CCS and the CCS_Close.vi closes the
CCS
 With RGB2picture.vi the retrieved image from the DSP is represented to control “Image
Out”. The inputs “Red Channel”, “Green Channel” and “Blue Channel” of the
RGB2picture.vi are connected to the respective data outputs of Case structure in the fifth
phase of the block diagram. To input “reference” a reference to the indicator “Image Out” is
connected, while to the input cluster “Draw Area Size” is connected a constant cluster that
defines the image size which in this case is 256x256. The indicator “Image Out” that
represents the retrieved image is connected to the output “Image Out” of RGB2picture.vi.

LabVIEW to CCS Link 187

Figure 163. The block diagram of RGB2picture.vi

 In Figure 163 the block diagram of the RGB2picture.vi is presented where the inputs
“Red Channel”, “Green Channel” and “Blue Channel” contain the R, G and B components of
a color image as 1-D arrays with 1-byte unsigned integers. By using the Join Numbers.vi the
arrays that are included to inputs “Red Channel”, “Green Channel” and “Blue Channel” are
converted to a single array that has the same number of elements with them. The new array is
connected to output “Flatten RGB data” and its elements are 4-bytes integers. The most
significant byte of each element in this array has a zero value, the second byte of each element
in this array has the value of the respective element in the R component, the third byte of each
element in this array has the value of the respective element in the G component and the
fourth byte of each element in this array has the value of the respective element in the B
component. By using the Reshape Array.vi the above array is converted to an array with
dimension defined by the input “Draw Area Size” meaning the dimensions of the image,
which in this case are 256x256. The output of the Reshape Array is connected to the output
“Unflatten RGB data” and to the input “Data (RGB format)” of Draw Unflattened Pixmap.vi.
The Draw Unflattened Pixmap.vi is a polymorphic VI in which the Draw True-Color Pixmap
is selected and to the output “new picture” the image, the data of which are included in input
“Data (RGB format)”. The output “new picture” of Draw Unflattened Pixmap.vi is connected
to the output “Image Out” of RGB2picture.vi
 The input “reference” of RGB2picture.vi that contains a reference to the indicator
“Image Out” defines the element that the “DrawAreaSize” property refers to. . The
“DrawAreaSize” property addresses only to images controls and indicators and modifies their
size according to the value of the cluster connected o this property. In this specific case, the
input cluster “Draw Area Size” that includes the dimensions of the image is connected to the
“DrawAreaSize” property. In this way is assured that the image indicator (specifically the
control “Image out”) will be of the same size as the image that will represent.
 The RGB2picture.vi can represent apart from color images and grayscale images as
well. The only think necessary is to connect the single array that includes information about
the image, to inputs “Red Channel”, “Green Channel” and “Blue Channel” at the same time.
 In this point the description of the sixth phase and of the block diagram of the Image
GUI.vi is completed.

188 4. Applications

4.2.6 Results – Conclusions

 In Figure 164, the front panel of the ImageGUI.vi is shown, after the edge detection on
the image cameraman.bmp is completed, which is represented to indicator “Image in”. The
process result is shown in the image represented by the indicator “Image Out”.

Figure 164. Thefront panel of ImageGUI.vi

 In Figure 165 the front panel of the ImageGUI.vi is shown, after the direct DCT and the
IDCT is applied on the image peppers.bmp, which is represented to indicator “Image in”. The
process result is shown in the image represented by the indicator “Image Out”.

Figure 165. The front panel of ImageGUI.vi

LabVIEW to CCS Link 189

 In Figure 16 the front panel of ImageGUI.vi is shown, after the McGovern algorithm of
the direct DCT and the IDCT is applied on the image peppers.bmp, which is represented to
indicator “Image in”. The process result is shown in the image represented by the indicator
“Image Out”.

Figure 166. The front panel of ImageGUI.vi

 In Figure 167 the front panel of ImageGUI.vi is shown, after the image boat.bmp is
encoded and decoded according to the JPEG standard, which is represented to indicator
“Image in”. The process result is shown in the image represented by the indicator “Image
Out”.

Figure 167. The front panel of ImageGUI.vi

190 4. Applications

 In Figure 168, the front panel of the ImageGUI.vi is shown, after the histogram
equalization of the image house_256rgb.bmp in the RGB space. The initial image is
represented to indicator “Image in”. The process result is shown in the image represented by
the indicator “Image Out”.

Figure 168. The front panel of ImageGUI.vi

 In Figure169, the front panel of the ImageGUI.vi is shown, after the histogram
equalization of the image house_256rgb.bmp in the YCbCr space. The initial image is
represented to indicator “Image in”. The process result is shown in the image represented by
the indicator “Image Out”.

Figure 169. The front panel of ImageGUI.vi

LabVIEW to CCS Link 191

5. Bibliography

[1] National Instruments, “LabVIEW Test Integration Toolkit for TI DSP”, Semptember

2003.
[2] The Mathworks, “Link fot Code Composer Studio Development Tools, User’s Guide

version 2”, 2006.
[3] National Instruments, “LabVIEW User Manual”, April 2003.
[4] Texas Instruments, “Code Composer Studio IDE, Getting Started Guide”, SPRU509F,

May 2005.
[5] Texas Instruments, “Real–Time Data Exchange”, SPRY012, Feb.1998.
[6] Nasser Kehtarnavaz and Namjin Kim, “Digital Signal Processing System – Level

Design Using LabVIEW”, Elsevier, 2005.
[7] Rulph Chassaing, Digital “Signal Processing and Applications with the C6713 and

C6416 DSK”, John Wiley & Sons, 2005.
[8] Sem M. Kuo, Bob H.Lee and Wenshun Tian, “Real-Time Digital Signal Processing”,

John Wiley & Sons, 2006.
[9] Istvan A.Szabo and Lajos Harasztosi, “Ways to use LabVIEW to aid DSP education”,

Proc. of the EDERS-2006, 2P

nd
P European DSP Education & Research Symposium,

Munich, Germany, 4 April, 2006.
[10] E. Zigouris, D. Petropoulos, M. Kristalli and M. Hatzigiorgaki., “An integrated low-cost

laboratory enviroment for digital image processing applications”, Proc. of the
ICSES’04, International Conference on Signals and Electronics Systems, pp.569-572,
Poznan, Poland, 13-15 September, 2004.

	Table Of Contents
	1. Introduction
	1.1 Link for Code Composer Studio Development Tools
	1.2 Test Integration Toolkit for TI DSPs
	1.3 What is LabVIEW to CCS Link ?

	2. Description of subVIs in LabVIEW to CCS Link
	2.1 CCS Setup
	2.1.1 CCS_Setup_Open.vi
	2.1.2 CCS_Setup_Close.vi
	2.1.3 CCS_Setup_Clear.vi
	2.1.4 CCS_Setup_Add_Board.vi
	2.1.5 CCS_Setup_Rename_Board.vi
	CCS_Setup_Remove_Board.vi
	2.1.7 CCS_Setup_Rename_Processor.vi
	2.1.8 CCS_Setup_Boards_&_Processors.vi
	2.1.9 CCS_Setup_Save.vi

	2.2 CCS Automation
	2.2.1 CCS_Open.vi
	2.2.2 CCS_Close.vi
	2.2.3 CCS_Open_Project.vi
	2.2.4 CCS_Close_Project.vi
	2.2.5 CCS_Connect.vi
	2.2.6 CCS_Disconnect.vi
	2.2.7 CCS_Build_All.vi
	2.2.8 CCS_Build_Result.vi
	2.2.9 CCS_Download.vi
	2.2.10 CCS_Reset.vi
	2.2.11 CCS_Run.vi
	2.2.12 CCS_Restart.vi
	2.2.13 CCS_Halt.vi
	2.2.14 CCS_Is_DSP_Running.vi
	2.2.15 CCS_RTDX_Enable.vi
	2.2.16 CCS_RTDX_Disable.vi
	2.2.17 CCS_RTDX_Logfile_Configuration.vi

	2.3 CCS Communication
	2.3.1 RTDX_Channel_Disable.vi
	2.3.2 RTDX_Channel_Enable.vi
	2.3.3 RTDX_Channel_Status.vi
	2.3.4 RTDX_Read.vi
	RTDX_Read_F4.vi
	RTDX_Read_F8.vi
	RTDX_Read_Ι1.vi
	RTDX_Read_Ι2.vi
	RTDX_Read_Ι4.vi
	RTDX_Read_UΙ1.vi
	RTDX_Read_UΙ2.vi
	RTDX_Read_UΙ4.vi
	RTDX_Read_SA_F4.vi
	RTDX_Read_SA_F8.vi
	RTDX_Read_SA_Ι1.vi
	RTDX_Read_SA_Ι2.vi
	RTDX_Read_SA_Ι4.vi
	RTDX_Read_SA_UΙ1.vi
	RTDX_Read_SA_UΙ2.vi
	RTDX_Read_SA_UΙ4.vi

	2.3.5 RTDX_Write.vi
	RTDX_Write_F4.vi
	RTDX_Write_F8.vi
	RTDX_Write_Ι1.vi
	RTDX_Write_Ι2.vi
	RTDX_Write_Ι4.vi
	RTDX_Write_UΙ1.vi
	RTDX_Write_UΙ2.vi
	RTDX_Write_UΙ4.vi
	RTDX_Write_SA_F4.vi
	RTDX_Write_SA_F8.vi
	RTDX_Write_SA_Ι1.vi
	RTDX_Write_SA_Ι2.vi
	RTDX_Write_SA_Ι4.vi
	RTDX_Write_SA_UΙ1.vi
	RTDX_Write_SA_UΙ2.vi
	RTDX_Write_SA_UΙ4.vi

	2.3.6 MEM_Get_Address.vi
	2.3.7 MEM_Read.vi
	MEM_Read_F4.vi
	MEM_Read_F8.vi
	MEM_Read_Ι1.vi
	MEM_Read_I2.vi
	MEM_Read_I4.vi
	MEM_Read_UΙ1.vi
	MEM_Read_UI2.vi
	MEM_Read_UI4.vi
	MEM_Read_String.vi
	MEM_Read_A_F4.vi
	MEM_Read_A_F8.vi
	MEM_Read_A_I1.vi
	MEM_Read_A_I2.vi
	MEM_Read_A_I4.vi
	MEM_Read_A_UI1.vi
	MEM_Read_A_UI2.vi
	MEM_Read_A_UI4.vi

	2.3.8 MEM_Write.vi
	MEM_Write_F4.vi
	MEM_Write_F8.vi
	MEM_Write_I1.vi
	MEM_Write_I2.vi
	MEM_Write_I4.vi
	MEM_Write_UI1.vi
	MEM_Write_UI2.vi
	MEM_Write_UI4.vi
	MEM_Write_String.vi
	MEM_Write_A_F4.vi
	MEM_Write_A_F8.vi
	MEM_Write_A_I1.vi
	MEM_Write_A_I2.vi
	MEM_Write_A_I4.vi
	MEM_Write_A_UI1.vi
	MEM_Write_A_UI2.vi
	MEM_Write_A_UI4.vi

	2.3.9 Leds_Read_(DSK6713).vi
	2.3.10 Leds_Write_(DSK6713).vi
	2.3.11 Switches_Read_(DSK6713).vi

	3. Using the LabVIEW to CCS Link
	3.1 CCS Setup
	3.1.1 CCS Setup for one board
	3.1.2 CCS Setup for multiple boards

	3.2 CCS Automation
	3.2.1 Automate CCS to control one DSP
	3.2.2 Automate CCS to control more that one DSPs

	3.3 CCS Communication
	3.3.1 Direct DSP memory access
	Reading from the DSP memory
	Writing to the DSP memory

	3.3.2 Using the RTDX technology
	Receiving data through the RTDX channel.
	Sending data through the RTDX channel

	4. Applications
	4.1 A Three-band Graphical Equalizer
	4.1.1 Guidelines for graphical equalizers
	4.1.2 Specifications
	4.1.3 Design and control of the graphical equalizer using MA
	Filters’ coefficients computation.
	Generation of a hypothetical signal
	MATLAB results of the equalizer

	4.1.4 Implementation of the graphical equalizer in CCS
	4.1.5 Implementation of a VI to control the graphical equali
	The front panel of the Equalizer.vi
	The block diagram of the Equalizer.vi

	4.1.6 Results – Conclusions

	4.2 A Digital Image Processing Application
	4.2.1 Edge Detection
	Implementation of Sobel edge detection

	4.2.2 Direct and Inverse Discrete Cosine Transformation
	Implementation of the 2D-DCT using the 1D-DCT
	Implementing the 2D_DCT using the McGovern algorithm

	4.2.3 JPEG standard encoding and decoding
	Partial Implementation of JPEG image encoding

	4.2.4 Histogram Equalization
	Histogram equalization on a grayscale image
	Histogram equalization on a grayscale image
	Histogram equalization implementation on a color image in RG
	Histogram equalization implementation on a color image in YC

	4.2.5 Implementing the VI to control the application
	The ImageGUI.vi front panel
	The block diagram panel of the ImageGUI.vi

	4.2.6 Results – Conclusions

	5. Bibliography

