Basics on Digital Signal Processing

Introduction

Vassilis Anastassopoulos
Electronics Laboratory, Physics Department, University of Patras
Outline of the Course

1. Introduction (sampling – quantization)
2. Signals and Systems
3. Z-Transform
4. The Discreet and the Fast Fourier Transform
5. Linear Filter Design
6. Noise
7. Median Filters
Analog & digital signals

Analog

Continuous function V of *continuous* variable t (time, space etc) : $V(t)$.

Digital

Discrete function V_k of *discrete* sampling variable t_k, with $k =$ integer: $V_k = V(t_k)$.

Uniform (periodic) sampling. Sampling frequency $f_S = 1/ t_S$
Analog & digital systems

Digital lowpass filter

Analog lowpass filter

1. Discrete-time
2. Difference equation
 \[y(n) = b y(n-1) + x(n) \]
3. \(z \)-plane (\(Z \)-transform used for analysis)

1. Continuous-time
2. Differential equation
 \[v(t) = RC \frac{dv_0(t)}{dt} + v_0(t) \]
3. \(s \)-plane (Laplace transform used for analysis)
Digital vs analog processing

Digital Signal Processing (DSPing)

Advantages

• More flexible.
• Often easier system upgrade.
• Data easily stored -memory.
• Better control over accuracy requirements.
• Reproducibility.
• Linear phase
• No drift with time and temperature

Limitations

• A/D & signal processors speed: wide-band signals still difficult to treat (real-time systems).
• Finite word-length effect.
DSPing: aim & tools

Applications
- Predicting a system’s output.
- Implementing a certain processing task.
- Studying a certain signal.

Hardware
- General purpose processors (GPP), \(\mu\)-controllers.
- Digital Signal Processors (DSP).
- Programmable logic (PLD, FPGA).

Software
- Programming languages: Pascal, C / C++ ...
- "High level" languages: Matlab, Mathcad, Mathematica...
- Dedicated tools (ex: filter design s/w packages).

Fast
Faster
real-time DSPing
Related areas

Digital Signal Processing

Communication Theory
Numerical Analysis
Probability and Statistics
Analog Signal Processing

Analog Electronics Digital Electronics Decision Theory
Applications

- Space
 - Space photograph enhancement
 - Data compression
 - Intelligent sensory analysis by remote space probes

- Medical
 - Diagnostic imaging (CT, MRI, ultrasound, and others)
 - Electrocardiogram analysis
 - Medical image storage/retrieval

- Commercial
 - Image and sound compression for multimedia presentation
 - Movie special effects
 - Video conference calling

- Telephone
 - Voice and data compression
 - Echo reduction
 - Signal multiplexing
 - Filtering

- Military
 - Radar
 - Sonar
 - Ordnance guidance
 - Secure communication

- Industrial
 - Oil and mineral prospecting
 - Process monitoring & control
 - Nondestructive testing
 - CAD and design tools

- Scientific
 - Earthquake recording & analysis
 - Data acquisition
 - Spectral analysis
 - Simulation and modeling
Important digital signals

Unit Impulse or Unit Sample.
The most important signal for two reasons
\[\delta(n) = 1 \text{ for } n = 0 \]
\[\delta(n) = u(n) - u(n-1) \]

Unit Step
\[u(n) = 1 \text{ for } n \geq 0 \]
\[\delta(n) = u(n) - u(n-1) \]

Unit Ramp
\[r(n) = nu(n) \]
General scheme

Sometimes steps missing
- Filter + A/D
 (ex: economics);
- D/A + filter
 (ex: digital output wanted).

Topics of this lecture.
Digital system implementation

KEY DECISION POINTS:
Analysis bandwidth, Dynamic range

1. Pass / stop bands.
2. Sampling rate.
3. No. of bits. Parameters.
4. Digital format.

What to use for processing?
AD/DA Conversion – General Scheme

antialias filter

Analog Filter → ADC → Digital Processing → DAC → Analog Filter

Filtered Analog Input → Digitized Input → Digitized Output → S/H Analog Output → Analog Output

reconstruction filter
AD Conversion - Details

- **Input filter**
- **ADC with sample and hold**
- **Digital processor**
- **DAC**
- **Output filter**

Blocks:
- **Lowpass filter**
- **Sample and hold**
- **Quantizer**
- **Encoder**

Signal Flow:
- $x(t)$ to input filter
- Output of input filter to ADC with sample and hold
- Output of ADC with sample and hold to digital processor
- Output of digital processor to DAC
- Output of DAC to output filter

Analog to Digital Conversion:
- $x(t)$ to analogue input
- Output of analogue input to lowpass filter
- Output of lowpass filter to sample and hold
- Output of sample and hold to quantizer
- Output of quantizer to encoder
- Output of encoder to digital output code

Symbol:
- F_s
Sampling

a. Analog frequency = 0.0 (i.e., DC)

b. Analog frequency = 0.09 of sampling rate

c. Analog frequency = 0.31 of sampling rate

d. Analog frequency = 0.95 of sampling rate
Sampling

How fast must we sample a continuous signal to preserve its info content?

Ex: train wheels in a movie.

25 frames (=samples) per second.

Train starts ➔ wheels ‘go’ clockwise.

Train accelerates ➔ wheels ‘go’ counter-clockwise.

Why?

Frequency misidentification due to low sampling frequency.
How fast do we have to instantly stare at the disk if it rotates with frequency 0.5 Hz?
The sampling theorem

A signal \(s(t) \) with maximum frequency \(f_{\text{MAX}} \) can be recovered if sampled at frequency \(f_s > 2 f_{\text{MAX}} \).

* Multiple proposers: Whittaker(s), Nyquist, Shannon, Kotel’nikov.

Naming gets confusing! Nyquist frequency (rate) \(f_N = 2 f_{\text{MAX}} \) or \(f_{\text{MAX}} \) or \(f_{\text{S,MIN}} \) or \(f_{\text{S,MIN}}/2 \)

Example

\[
s(t) = 3 \cdot \cos(50\pi t) + 10 \cdot \sin(300\pi t) - \cos(100\pi t)
\]

\(F_1 = 25 \text{ Hz}, F_2 = 150 \text{ Hz}, F_3 = 50 \text{ Hz} \)

Condition on \(f_s \)?

\(f_s > 300 \text{ Hz} \)
Sampling and Spectrum
1 Sampling low-pass signals

(a) Band-limited signal: frequencies in \([-B, B]\) \((f_{\text{MAX}} = B)\).

(b) Time sampling \(\rightarrow\) frequency repetition.
 \(f_S > 2B \rightarrow\) no aliasing.

(c) \(f_S \leq 2B \rightarrow\) aliasing!

 Aliasing: signal ambiguity in frequency domain.
Antialiasing filter

(a), (b) Out-of-band noise can alias into band of interest. Filter it before!

(c) Antialiasing filter

Passband: depends on bandwidth of interest.

Attenuation A_{MIN}: depends on
- ADC resolution (number of bits N).
 \[A_{MIN}, \text{dB} \approx 6.02 N + 1.76 \]
- Out-of-band noise magnitude.

Other parameters: ripple, stopband frequency...
Under-sampling

Using spectral replications to reduce sampling frequency f_S req’ments.

$$\frac{2 \cdot f_C + B}{m + 1} \leq f_S \leq \frac{2 \cdot f_C - B}{m}$$

$m \in \bigcap$, selected so that $f_S > 2B$

Example

$f_C = 20$ MHz, $B = 5$MHz

Without under-sampling $f_S > 40$ MHz.

With under-sampling $f_S = 22.5$ MHz (m=1);

= 17.5 MHz (m=2); = 11.66 MHz (m=3).

Advantages

➢ Slower ADCs / electronics needed.

➢ Simpler antialiasing filters.
Quantization and Coding

N Quantization Levels

Quantization Noise
SNR of ideal ADC

\[\text{SNR}_{\text{ideal}} = 20 \cdot \log_{10} \left(\frac{\text{RMS(input)}}{\text{RMS(e}_q)} \right) \] (1)

Also called SQNR
(signal-to-quantisation-noise ratio)

\[\text{RMS(input)} = \sqrt{\frac{1}{T} \int_{0}^{T} \left(\frac{V_{\text{FSR}}}{2} \cdot \sin(\omega t) \right)^2 dt} = \frac{V_{\text{FSR}}}{2\sqrt{2}} \]

\[\text{RMS(e}_q) = \sqrt{\int_{-q/2}^{q/2} e_q^2 \cdot p(e_q) de_q} = \frac{q}{\sqrt{12}} = \frac{V_{\text{FSR}}}{2^N \cdot \sqrt{12}} \]

(sampling frequency \(f_S = 2 f_{\text{MAX}} \))

Assumptions

- Ideal ADC: only quantisation error \(e_q \) (\(p(e) \) constant, no stuck bits…)
- \(e_q \) uncorrelated with signal.
- ADC performance constant in time.

Input(t) = \(\frac{1}{2} V_{\text{FSR}} \sin(\omega t) \).

\(p(e) \)
quantisation error probability density

\(e_q \)
Error value

\(\frac{1}{q} \)

Error value

\(-\frac{q}{2} \)

\(\frac{q}{2} \)
SNR of ideal ADC

Substituting in (1):

\[\text{SNR}_{\text{ideal}} = 6.02 \cdot N + 1.76 \text{[dB]} \]

One additional bit \(\Rightarrow \) SNR increased by 6 dB

Real SNR lower because:
- Real signals have noise.
- Forcing input to full scale unwise.
- Real ADCs have additional noise (aperture jitter, non-linearities etc).

Actually (2) needs correction factor depending on ratio between sampling freq & Nyquist freq. Processing gain due to oversampling.
Coding - Conventional
Coding – Flash AD

![Flash AD Diagram](image-url)
DAC process

![Diagram showing the DAC process](image-url)
The oversampling process takes apart the images of the signal band.

When the sampling rate increases (4 times) the quantization noise spreads over a larger region. The quantization noise power in the signal band is 4 times smaller.

Spectrum at the output of a noise shaping quantizer loop compared to those obtained from Nyquist and Oversampling converters.
A discreet-time system is a device or algorithm that operates on an input sequence according to some computational procedure.

It may be:
- A general purpose computer
- A microprocessor
- Dedicated hardware
- A combination of all these
System Properties
- linear
- Time Invariant
- Stable
- Causal

\[y(n) = \sum_{k=0}^{N} a_k x(n - k) \]

Convolution
Linear Systems - Convolution

\[x(n) \quad h(n) \quad y(n) \]

\[5 + 7 - 1 = 11 \text{ terms} \]
Linear Systems - Convolution

5+7-1=11 terms
General Linear Structure

\[y(n) = \sum_{k=0}^{M} a_k x(n-k) - \sum_{k=1}^{L} b_k y(n-k) \]
Simple Examples

\[x(n) \xrightarrow{T_s} x(n-1) \xrightarrow{T_s} x(n-2) \xrightarrow{T_s} x(n-3) \xrightarrow{T_s} x(n-4) \]

\[0.2 \quad 0.2 \quad 0.2 \quad 0.2 \]

\[\alpha. \]

\[y(n-1) \xrightarrow{T_s} y(n) = \]

\[\beta. \]

\[x(n) \xrightarrow{+} y(n) = \]

\[\gamma. \]

\[x(n) \xrightarrow{T_s} x(n-1) \]

\[y(n) = \]

\[\]
Linearity – Superposition – Frequency Preservation

Principle of Superposition

\[x_1(n) \] \[-H\] \[\rightarrow \] \[y_1(n) \]

\[x_2(n) \] \[-H\] \[\rightarrow \] \[y_2(n) \]

\[ax_1(n) + bx_2(n) \] \[-H\] \[\rightarrow \] \[ay_1(n) + by_2(n) \]

Principle of Superposition \(\Rightarrow\) Frequency Preservation

\[x_1(n) \] \[-x^2\] \[\rightarrow \] \[x_1^2(n) \]

\[x_2(n) \] \[-x^2\] \[\rightarrow \] \[x_2^2(n) \]

\[x_1(n) + x_2(n) \] \[-x^2\] \[\rightarrow \] \[x_1^2(n) + x_2^2(n) + 2x_1(n)x_2(n) \]

Non-linear

If \(y(n) = x^2(n) \) then for \(x(n) = \sin(n\omega) \) \(y(n) = \sin^2(n\omega) = 0.5 + 0.5\cos(2n\omega) \)
The END

Have a nice Weekend

Back on Tuesday